歡迎光臨管理者范文網(wǎng)
當前位置:管理者范文網(wǎng) > 范文大全 > 工作總結(jié) > 教學工作總結(jié)

七年級下冊數(shù)學總結(jié)(優(yōu)選4篇)

更新時間:2024-11-20 查看人數(shù):73

七年級下冊數(shù)學總結(jié)

第1篇 七年級下冊數(shù)學知識點總結(jié)

2 兩點之間線段最短

3 同角或等角的補角相等

4 同角或等角的余角相等

5 過一點有且只有一條直線和已知直線垂直

6 直線外一點與直線上各點連接的所有線段中,垂線段最短

7 平行公理 經(jīng)過直線外一點,有且只有一條直線與這條直線平行

8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行

9 同位角相等,兩直線平行

10 內(nèi)錯角相等,兩直線平行

11 同旁內(nèi)角互補,兩直線平行

12兩直線平行,同位角相等

13 兩直線平行,內(nèi)錯角相等

14 兩直線平行,同旁內(nèi)角互補

15 定理 三角形兩邊的和大于第三邊

16 推論 三角形兩邊的差小于第三邊

17 三角形內(nèi)角和定理 三角形三個內(nèi)角的和等于180°

18 推論1 直角三角形的兩個銳角互余

19 推論2 三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和

20 推論3 三角形的一個外角大于任何一個和它不相鄰的內(nèi)角

21 全等三角形的對應邊、對應角相等

22邊角邊公理(sas) 有兩邊和它們的夾角對應相等的兩個三角形全等

23 角邊角公理( asa)有兩角和它們的夾邊對應相等的兩個三角形全等

24 推論(aas) 有兩角和其中一角的對邊對應相等的兩個三角形全等

25 邊邊邊公理(sss) 有三邊對應相等的兩個三角形全等

26 斜邊、直角邊公理(hl) 有斜邊和一條直角邊對應相等的兩個直角三角形全等 27 定理1 在角的平分線上的點到這個角的兩邊的距離相等

28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上

29 角的平分線是到角的兩邊距離相等的所有點的集合

30 等腰三角形的性質(zhì)定理 等腰三角形的兩個底角相等 (即等邊對等角)

31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊

32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

33 推論3 等邊三角形的各角都相等,并且每一個角都等于60°

34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

35 推論1 三個角都相等的三角形是等邊三角形

36 推論 2 有一個角等于60°的等腰三角形是等邊三角形

37 在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半 38 直角三角形斜邊上的中線等于斜邊上的一半

39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等 

40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

42 定理1 關(guān)于某條直線對稱的兩個圖形是全等形

43 定理 2 如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應點連線的垂直平分線

44定理3 兩個圖形關(guān)于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上

45逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱

46勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2 47勾股定理的逆定理 如果三角形的三邊長a、b、c有關(guān)系a^2+b^2=c^2 ,那么這個三角形是直角三角形

48定理 四邊形的內(nèi)角和等于360°

49四邊形的外角和等于360°

50多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于(n-2)×180°

51推論 任意多邊的外角和等于360°

52平行四邊形性質(zhì)定理1 平行四邊形的對角相等

53平行四邊形性質(zhì)定理2 平行四邊形的對邊相等

54推論 夾在兩條平行線間的平行線段相等

55平行四邊形性質(zhì)定理3 平行四邊形的對角線互相平分

56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形

57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形

58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形

59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形

60矩形性質(zhì)定理1 矩形的四個角都是直角

61矩形性質(zhì)定理2 矩形的對角線相等

62矩形判定定理1 有三個角是直角的四邊形是矩形

63矩形判定定理2 對角線相等的平行四邊形是矩形

64菱形性質(zhì)定理1 菱形的四條邊都相等

65菱形性質(zhì)定理2 菱形的對角線互相垂直,并且每一條對角線平分一組對角

66菱形面積=對角線乘積的一半,即s=(a×b)÷2

67菱形判定定理1 四邊都相等的四邊形是菱形

68菱形判定定理2 對角線互相垂直的平行四邊形是菱形

69正方形性質(zhì)定理1 正方形的四個角都是直角,四條邊都相等

70正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

71定理1 關(guān)于中心對稱的兩個圖形是全等的

72定理2 關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分 73逆定理 如果兩個圖形的對應點連線都經(jīng)過某一點,并且被這一 點平分,那么這兩個圖形關(guān)于這一點對稱

74等腰梯形性質(zhì)定理 等腰梯形在同一底上的兩個角相等

75等腰梯形的兩條對角線相等

76等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形

77對角線相等的梯形是等腰梯形

78平行線等分線段定理 如果一組平行線在一條直線上截得的線段

相等,那么在其他直線上截得的線段也相等

79 推論1 經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰

80 推論2 經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第 三邊

81 三角形中位線定理 三角形的中位線平行于第三邊,并且等于它 的一半

82 梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的 一半 l=(a+b)÷2 s=l×h 83 (1)比例的基本性質(zhì) 如果a:b=c:d,那么ad=bc

如果ad=bc,那么a:b=c:d wc呁/s∕-?

84 (2)合比性質(zhì) 如果a/b=c/d,那么(a±b)/b=(c±d)/d

85 (3)等比性質(zhì) 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么

(a+c+…+m)/(b+d+…+n)=a/b

86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應 線段成比例

87 推論 平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例 88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊

89 平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例

90 定理 平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似

91 相似三角形判定定理1 兩角對應相等,兩三角形相似(asa)

92 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似

93 判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(sas)

94 判定定理3 三邊對應成比例,兩三角形相似(sss)

95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三 角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似

96 性質(zhì)定理1 相似三角形對應高的比,對應中線的比與對應角平 分線的比都等于相似比 97 性質(zhì)定理2 相似三角形周長的比等于相似比

98 性質(zhì)定理3 相似三角形面積的比等于相似比的平方

99 任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等 于它的余角的正弦值 100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等 于它的余角的正切值 101圓是定點的距離等于定長的點的集合

102圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合

103圓的外部可以看作是圓心的距離大于半徑的點的集合

104同圓或等圓的半徑相等

105到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半 徑的圓

106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直 平分線

107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距 離相等的一條直線 109定理 不在同一直線上的三點確定一個圓。

110垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

111推論1 ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧

③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

112推論2 圓的兩條平行弦所夾的弧相等

113圓是以圓心為對稱中心的中心對稱圖形

114定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等

115推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量

相等那么它們所對應的其余各組量都相等

116定理 一條弧所對的圓周角等于它所對的圓心角的一半

117推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等 118推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑

119推論3 如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形 120定理 圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它 的內(nèi)對角

121①直線l和⊙o相交 d<r

②直線l和⊙o相切 d=r

③直線l和⊙o相離 d>r ?

122切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點的半徑

124推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點

125推論2 經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心

126切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等, 圓心和這一點的連線平分兩條切線的夾角

127圓的外切四邊形的兩組對邊的和相等

128弦切角定理 弦切角等于它所夾的弧對的圓周角

129推論 如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等

130相交弦定理 圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積 相等

131推論 如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的 兩條線段的比例中項 132切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割 線與圓交點的兩條線段長的比例中項

133推論 從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等

134如果兩個圓相切,那么切點一定在連心線上

135①兩圓外離 d>r+r ②兩圓外切 d=r+r

③兩圓相交 r-r<d<r+r(r>r) 

④兩圓內(nèi)切 d=r-r(r>r) ⑤兩圓內(nèi)含d<r-r(r>r)

136定理 相交兩圓的連心線垂直平分兩圓的公_弦

137定理 把圓分成n(n≥3):

⑴依次連結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形

⑵經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形 138定理 任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓

139正n邊形的每個內(nèi)角都等于(n-2)×180°/n

140定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

141正n邊形的面積sn=pnrn/2 p表示正n邊形的周長

142正三角形面積√3a/4 a表示邊長

143如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

144弧長撲愎劍篖=n兀r/180

145扇形面積公式:s扇形=n兀r^2/360=lr/2

146內(nèi)公切線長= d-(r-r) 外公切線長= d-(r+r)

(還有一些,大家?guī)脱a充吧)

實用工具:常用數(shù)學公式

公式分類 公式表達式

乘法與因式分解

a^2-b^2=(a+b)(a-b)

a^3+b^3=(a+b)(a^2-ab+b^2) ·

a^3-b^3=(a-b(a^2+ab+b^2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b^2-4ac)/2a -b-√(b^2-4ac)/2a

根與系數(shù)的關(guān)系 _1+_2=-b/a _1__2=c/a 注:韋達定理

判別式

b^2-4ac=0 注:方程有兩個相等的實根

b^2-4ac>0 注:方程有兩個不等的實根 

b^2-4ac<0 注:方程沒有實根,有_軛復數(shù)根

三角函數(shù)公式

兩角和公式

sin(a+b)=sinacosb+cosasinb

sin(a-b)=sinacosb-sinbcosa 

cos(a+b)=cosacosb-sinasinb

cos(a-b)=cosacosb+sinasinb

tan(a+b)=(tana+tanb)/(1-tanatanb)

tan(a-b)=(tana-tanb)/(1+tanatanb)

cot(a+b)=(cotacotb-1)/(cotb+cota) 

cot(a-b)=(cotacotb+1)/(cotb-cota)

倍角公式

tan2a=2tana/[1-(tana)^2]

cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2

半角公式

sin(a/2)=√((1-cosa)/2) sin(a/2)=-√((1-cosa)/2)

cos(a/2)=√((1+cosa)/2) cos(a/2)=-√((1+cosa)/2)

tan(a/2)=√((1-cosa)/((1+cosa)) tan(a/2)=-√((1-cosa)/((1+cosa))

cot(a/2)=√((1+cosa)/((1-cosa)) cot(a/2)=-√((1+cosa)/((1-cosa))  和差化積

2sinacosb=sin(a+b)+sin(a-b)

2cosasinb=sin(a+b)-sin(a-b) )

2cosacosb=cos(a+b)-sin(a-b)

-2sinasinb=cos(a+b)-cos(a-b)

sina+sinb=2sin((a+b)/2)cos((a-b)/2

cosa+cosb=2cos((a+b)/2)sin((a-b)/2)

tana+tanb=sin(a+b)/cosacosb

某些數(shù)列前n項和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2

1+3+5+7+9+11+13+15+…+(2n-1)=n2 -

2+4+6+8+10+12+14+…+(2n)=n(n+1) 5

1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6

1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4

1_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sina=b/sinb=c/sinc=2r 注: 其中 r 表示三角形的外接圓半徑 余弦定理 b^2=a^2+c^2-2accosb 注:角b是邊a和邊c的夾角

圓的標準方程 (_-a)^2+(y-b)^2=^r2 注:(a,b)是圓心坐標

圓的一般方程 _^2+y^2+d_+ey+f=0 注:d^2+e^2-4f>0

拋物線標準方程 y^2=2px y^2=-2px _^2=2py _^2=-2py

直棱柱側(cè)面積 s=c_h 斜棱柱側(cè)面積 s=c'_h

正棱錐側(cè)面積 s=1/2c_h' 正棱臺側(cè)面積 s=1/2(c+c')h'

圓臺側(cè)面積 s=1/2(c+c')l=pi(r+r)l 球的表面積 s=4pi_r2

圓柱側(cè)面積 s=c_h=2pi_h 圓錐側(cè)面積 s=1/2_c_l=pi_r_l

弧長公式 l=a_r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2_l_r 錐體體積公式 v=1/3_s_h 圓錐體體積公式 v=1/3_pi_r2h 

斜棱柱體積 v=s'l 注:其中,s'是直截面面積, l是側(cè)棱長

柱體體積公式 v=s_h 圓柱體 v=pi_r2h

第2篇 七年級下冊數(shù)學整式的運算知識點總結(jié)

七年級下冊數(shù)學整式的運算知識點總結(jié)

一、整式

單項式和多項式統(tǒng)稱整式。

a)由數(shù)與字母的積組成的代數(shù)式叫做單項式。單獨一個數(shù)或字母也是單項式。

b)單項式的系數(shù)是這個單項式的數(shù)字因數(shù),作為單項式的系數(shù),必須連同數(shù)字前面的性質(zhì)符號,如果一個單項式只是字母的積,并非沒有系數(shù),系數(shù)為1或-1。

c)一個單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)(注意:常數(shù)項的單項式次數(shù)為0)

a)幾個單項式的和叫做多項式。在多項式中,每個單項式叫做多項式的項。其中,不含字母的項叫做常數(shù)項。一個多項式中,次數(shù)最高項的次數(shù),叫做這個多項式的次數(shù).

b)單項式和多項式都有次數(shù),含有字母的單項式有系數(shù),多項式?jīng)]有系數(shù)。多項式的每一項都是單項式,一個多項式的項數(shù)就是這個多項式作為加數(shù)的單項式的個數(shù)。多項式中每一項都有它們各自的次數(shù),但是它們的次數(shù)不可能都作是為這個多項式的次數(shù),一個多項式的次數(shù)只有一個,它是所含各項的.次數(shù)中最高的那一項次數(shù).

a)整式的加減實質(zhì)上就是去括號后,合并同類項,運算結(jié)果是一個多項式或是單項式.

b)括號前面是-號,去括號時,括號內(nèi)各項要變號,一個數(shù)與多項式相乘時,這個數(shù)與括號內(nèi)各項都要相乘。

二、同底數(shù)冪的乘法

(m,n都是整數(shù))是冪的運算中最基本的法則,在應用法則運算時,要注意以下幾點:

a)法則使用的前提條件是:冪的底數(shù)相同而且是相乘時,底數(shù)a可以是一個具體的數(shù)字式字母,也可以是一個單項或多項式;

b) 指數(shù)是1時,不要誤以為沒有指數(shù);

c)不要將同底數(shù)冪的乘法與整式的加法相混淆,對乘法,只要底數(shù)相同指數(shù)就可以相加;而對于加法,不僅底數(shù)相同,還要求指數(shù)相同才能相加;

d)當三個或三個以上同底數(shù)冪相乘時,法則可推廣為

(其中m、n、p均為整數(shù));

e)公式還可以逆用:

(m、n均為整數(shù))

a)冪的乘方法則:

(m,n都是整數(shù)數(shù))是冪的乘法法則為基礎推導出來的,但兩者不能混淆。

b)(m,n都為整數(shù))。

c) 底數(shù)有負號時,運算時要注意,底數(shù)是a與(-a)時不是同底,但可以利用乘方法則化成同底,如將(-a)3化成-a3

d)底數(shù)有時形式不同,但可以化成相同。

e) 要注意區(qū)別(ab)n與(a+b)n意義是不同的,不要誤以為(a+b)n=an+bn(a、b均不為零)。

f) 積的乘方法則:積的乘方,等于把積每一個因式分別乘方,再把所得的冪相乘,即(ab)n=anbn(n為正整數(shù))。

g) 冪的乘方與積乘方法則均可逆向運用。

三、同底數(shù)冪的除法

a)同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,

b)在應用時需要注意以下幾點:

1) 法則使用的前提條件是同底數(shù)冪相除而且0不能做除數(shù),所以法則中a0。

2)任何不等于0的數(shù)的0次冪等于1,即a0=1(a0) ,如100=1 ,(-2.50=1),則00無意義。

c)任何不等于0的數(shù)的-p次冪(p是正整數(shù)),等于這個數(shù)的p的次冪的倒數(shù),即

( a0,p是正整數(shù)),而0-1,0-3都是無意義的;當a0時,a-p的值一定是正的,當a0時,a-p的值可能是正也可能是負的,如, d)運算要注意運算順序。

四、整式的乘法

單項式相乘,它們的系數(shù)、相同字母分別相乘,對于只在一個單項式里含有的字母,連同它的指數(shù)作為積的一個因式。

單項式乘法法則在運用時要注意以下幾點:

a)積的系數(shù)等于各因式系數(shù)積,先確定符號,再計算絕對值。這時容易出現(xiàn)的錯誤的是,將系數(shù)相乘與指數(shù)相加混淆;

b)相同字母相乘,運用同底數(shù)冪的乘法法則;

c)只在一個單項式里含有的字母,要連同它的指數(shù)作為積的一個因式;

d)單項式乘法法則對于三個以上的單項式相乘同樣適用;

e)單項式乘以單項式,結(jié)果仍是一個單項式。

單項式乘以多項式,是通過乘法對加法的分配律,把它轉(zhuǎn)化為單項式乘以單項式,即單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。

單項式與多項式相乘時要注意以下幾點:

a)單項式與多項式相乘,積是一個多項式,其項數(shù)與多項式的項數(shù)相同;

b)運算時要注意積的符號,多項式的每一項都包括它前面的符號;

c) 在混合運算時,要注意運算順序。

多項式與多項式相乘,先用一個多項式中的每一項乘以另一個多項式的每一項相乘,再把所得的積相加。

多項式與多項式相乘時要注意以下幾點:

a)多項式與多項式相乘要防止漏項,檢查的方法是:在沒有合并同類項之前,積的項數(shù)應等于原兩個多項式項數(shù)的積;

b)多項式相乘的結(jié)果應注意合并同類項;

c)對含有同一個字母的一次項系數(shù)是1的兩個一次二項式相乘(_+a)(_+b)=_2+(a+b)_+ab,其二次項系數(shù)為1,一次項系數(shù)等于兩個因式中常數(shù)項的和,常數(shù)項是兩個因式中常數(shù)項的積。對于一次項系數(shù)不為1的兩個一次二項式(m_+a)和(n_+b)相乘可以得到。

五、平方差公式

兩數(shù)和與這兩數(shù)差的積,等于它們的平方差,即其結(jié)構(gòu)特征是:

a)公式左邊是兩個二項式相乘,兩個二項式中第一項相同,第二項互為相反數(shù);

b) 公式右邊是兩項的平方差,即相同項的平方與相反項的平方之差。

八、完全平方公式

兩數(shù)和(或差)的平方,等于它們的平方和,加上(或減去)它們的積的2倍,即口訣:首平方,尾平方,2倍乘積在中央;

a)公式左邊是二項式的完全平方;

b)公式右邊共有三項,是二項式中二項的平方和,再加上或減去這兩項乘積的2倍。

c)在運用完全平方公式時,要注意公式右邊中間項的符號,以及避免出現(xiàn)這樣的錯誤。

第3篇 七年級下冊數(shù)學公式總結(jié)

方程及不等式——解方程的兩種基本方法:

1.代入消元法

2.加減消元法 如果a>b,則a+c>b+c,a-c>b-c 如果a>b,c>0,則ac>bc 如果a>b,c<0,則ac

1.三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和。

2.三角形的一個外角大于任何一個與它不相鄰的內(nèi)角。

3.三角形具有穩(wěn)定性。

4.三角形任意兩邊之和大于第三邊,兩邊之差小于第三邊。

n=多邊形的邊數(shù)(n>0)

多邊形的外角和:180°

多邊形的內(nèi)角和:180°_(n-2)

多邊形的邊數(shù):n邊

多邊形對角線的條數(shù):n(n-3)÷2 正多邊形的各個內(nèi)角:180°-360°÷n

第4篇 2023七年級下冊數(shù)學知識點總結(jié)

相交線與平行線

一、知識網(wǎng)絡結(jié)構(gòu)

二、知識要點

1、在同一平面內(nèi),兩條直線的位置關(guān)系有 兩 種: 相交 和 平行 , 垂直 是相交的一種特殊情況。

2、在同一平面內(nèi),不相交的兩條直線叫 平行線 。如果兩條直線只有 一個 公共點,稱這兩條直線相交;如果兩條直線 沒有 公共點,稱這兩條直線平行。

3、兩條直線相交所構(gòu)成的四個角中,有 公共頂點 且有 一條公共邊 的兩個角是

鄰補角。鄰補角的性質(zhì): 鄰補角互補 。如圖1所示, 與 互為鄰補角,

與 互為鄰補角。 + = 180°; + = 180°; + = 180°;

+ = 180°。

4、兩條直線相交所構(gòu)成的四個角中,一個角的兩邊分別是另一個角的兩邊的 反向延長線 ,這樣的兩個角互為 對頂角 。對頂角的性質(zhì):對頂角相等。如圖1所示, 與 互為對頂角。 = ;

= 。

5、兩條直線相交所成的角中,如果有一個是 直角或90°時,稱這兩條直線互相垂直,

其中一條叫做另一條的垂線。如圖2所示,當 = 90°時, ⊥ 。

垂線的性質(zhì):

性質(zhì)1:過一點有且只有一條直線與已知直線垂直。

性質(zhì)2:連接直線外一點與直線上各點的所有線段中,垂線段最短。

性質(zhì)3:如圖2所示,當 a ⊥ b 時, = = = = 90°。

點到直線的距離:直線外一點到這條直線的垂線段的長度叫點到直線的距離。

6、同位角、內(nèi)錯角、同旁內(nèi)角基本特征:

①在兩條直線(被截線)的 同一方 ,都在第三條直線(截線)的 同一側(cè) ,這樣

的兩個角叫 同位角 。圖3中,共有 對同位角: 與 是同位角;

與 是同位角; 與 是同位角; 與 是同位角。

②在兩條直線(被截線) 之間 ,并且在第三條直線(截線)的 兩側(cè) ,這樣的兩個角叫 內(nèi)錯角 。圖3中,共有 對內(nèi)錯角: 與 是內(nèi)錯角; 與 是內(nèi)錯角。

③在兩條直線(被截線)的 之間 ,都在第三條直線(截線)的 同一旁 ,這樣的兩個角叫 同旁內(nèi)角 。圖3中,共有 對同旁內(nèi)角: 與 是同旁內(nèi)角; 與 是同旁內(nèi)角。

7、平行公理:經(jīng)過直線外一點有且只有一條直線與已知直線平行。

平行公理的推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。

平行線的性質(zhì):

性質(zhì)1:兩直線平行,同位角相等。如圖4所示,如果a∥b,

則 = ; = ; = ; = 。

性質(zhì)2:兩直線平行,內(nèi)錯角相等。如圖4所示,如果a∥b,則 = ; = 。

性質(zhì)3:兩直線平行,同旁內(nèi)角互補。如圖4所示,如果a∥b,則 + = 180°;

+ = 180°。

性質(zhì)4:平行于同一條直線的兩條直線互相平行。如果a∥b,a∥c,則 ∥ 。

8、平行線的判定:

判定1:同位角相等,兩直線平行。如圖5所示,如果 =

或 = 或 = 或 = ,則a∥b。

判定2:內(nèi)錯角相等,兩直線平行。如圖5所示,如果 = 或 = ,則a∥b 。

判定3:同旁內(nèi)角互補,兩直線平行。如圖5所示,如果 + = 180°;

+ = 180°,則a∥b。

判定4:平行于同一條直線的兩條直線互相平行。如果a∥b,a∥c,則 ∥ 。

9、判斷一件事情的語句叫命題。命題由 題設 和 結(jié)論 兩部分組成,有 真命題 和 假命題 之分。如果題設成立,那么結(jié)論 一定 成立,這樣的命題叫 真命題 ;如果題設成立,那么結(jié)論 不一定 成立,這樣的命題叫假命題。真命題的正確性是經(jīng)過推理證實的,這樣的真命題叫定理,它可以作為繼續(xù)推理的依據(jù)。

10、平移:在平面內(nèi),將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移變換,簡稱平移。

平移后,新圖形與原圖形的 形狀 和 大小 完全相同。平移后得到的新圖形中每一點,都是由原圖形中的某一點移動后得到的,這樣的兩個點叫做對應點。

平移性質(zhì):平移前后兩個圖形中①對應點的連線平行且相等;②對應線段相等;③對應角相等。

第六章 實數(shù)

知識點一實數(shù)的分類

1、按定義分類: 2.按性質(zhì)符號分類:

注:0既不是正數(shù)也不是負數(shù).

知識點二實數(shù)的相關(guān)概念

1.相反數(shù)

(1)代數(shù)意義:只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù).0的相反數(shù)是0.

(2)幾何意義:在數(shù)軸上原點的兩側(cè),與原點距離相等的兩個點表示的兩個數(shù)互為相反數(shù),或數(shù)軸上,互為相反數(shù)的兩個數(shù)所對應的點關(guān)于原點對稱.

(3)互為相反數(shù)的兩個數(shù)之和等于0.a、b互為相反數(shù) a+b=0.

2.絕對值 |a|≥0.

3.倒數(shù) (1)0沒有倒數(shù) (2)乘積是1的兩個數(shù)互為倒數(shù).a、b互為倒數(shù) .

4.平方根

(1)如果一個數(shù)的平方等于a,這個數(shù)就叫做a的平方根.一個正數(shù)有兩個平方根,它們互為相反數(shù);0有一個平方根,它是0本身;負數(shù)沒有平方根.a(a≥0)的平方根記作.

(2)一個正數(shù)a的正的平方根,叫做a的算術(shù)平方根.a(a≥0)的算術(shù)平方根記作 .

5.立方根

如果_3=a,那么_叫做a的立方根.一個正數(shù)有一個正的立方根;一個負數(shù)有一個負的立方根;零的立方根是零.

知識點三實數(shù)與數(shù)軸

數(shù)軸定義: 規(guī)定了原點,正方向和單位長度的直線叫做數(shù)軸,數(shù)軸的三要素缺一不可.

知識點四實數(shù)大小的比較

1.對于數(shù)軸上的任意兩個點,靠右邊的點所表示的數(shù)較大.

2.正數(shù)都大于0,負數(shù)都小于0,兩個正數(shù),絕對值較大的那個正數(shù)大;兩個負數(shù);絕對值大的反而小.

3.無理數(shù)的比較大?。?/p>

知識點五實數(shù)的運算

1.加法

同號兩數(shù)相加,取相同的符號,并把絕對值相加;絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;互為相反數(shù)的兩個數(shù)相加得0;一個數(shù)同0相加,仍得這個數(shù).

2.減法:減去一個數(shù)等于加上這個數(shù)的相反數(shù).

3.乘法

幾個非零實數(shù)相乘,積的符號由負因數(shù)的個數(shù)決定,當負因數(shù)有偶數(shù)個時,積為正;當負因數(shù)有奇數(shù)個時,積為負.幾個數(shù)相乘,有一個因數(shù)為0,積就為0.

4.除法

除以一個數(shù),等于乘上這個數(shù)的倒數(shù).兩個數(shù)相除,同號得正,異號得負,并把絕對值相除.0除以任何一個不等于0的數(shù)都得0.

5.乘方與開方

(1)an所表示的意義是n個a相乘,正數(shù)的任何次冪是正數(shù),負數(shù)的偶次冪是正數(shù),負數(shù)的奇次冪是負數(shù).

(2)正數(shù)和0可以開平方,負數(shù)不能開平方;正數(shù)、負數(shù)和0都可以開立方.

(3)零指數(shù)與負指數(shù)

知識點六有效數(shù)字和科學記數(shù)法

1.有效數(shù)字:

一個近似數(shù),從左邊第一個不是0的數(shù)字起,到精確到的數(shù)位為止,所有的數(shù)字,都叫做這個近似數(shù)的有效數(shù)字.

2.科學記數(shù)法:

把一個數(shù)用 (1≤ <10,n為整數(shù))的形式記數(shù)的方法叫科學記數(shù)法.

第七章 平面直角坐標系

一、知識網(wǎng)絡結(jié)構(gòu)

二、知識要點

1、有序數(shù)對:有順序的兩個數(shù)a與b組成的數(shù)對叫做有序數(shù)對,記做(a,b) 。

2、平面直角坐標系:在平面內(nèi),兩條互相垂直且有公共原點的數(shù)軸組成平面直角坐標系。

3、橫軸、縱軸、原點:水平的數(shù)軸稱為_軸或橫軸;豎直的數(shù)軸稱為y軸或縱軸;兩坐標軸的交點為平面直角坐標系的原點。

4、坐標:對于平面內(nèi)任一點p,過p分別向_軸,y軸作垂線,垂足分別在_軸,y軸上,對應的數(shù)a,b分別叫點p的橫坐標和縱坐標,記作p(a,b)。

5、象限:兩條坐標軸把平面分成四個部分,右上部分叫第一象限,按逆時針方向依次叫第二象限、第三象限、第四象限。坐標軸上的點不在任何一個象限內(nèi)。

6、各象限點的坐標特點①第一象限的點:橫坐標 0,縱坐標 0;②第二象限的點:橫坐標 0,縱坐標 0;③第三象限的點:橫坐標 0,縱坐標 0;④第四象限的點:橫坐標 0,縱坐標 0。

7、坐標軸上點的坐標特點①_軸正半軸上的點:橫坐標 0,縱坐標 0;②_軸負半軸上的點:橫坐標 0,縱坐標 0;③y軸正半軸上的點:橫坐標 0,縱坐標 0;④y軸負半軸上的點:橫坐

標 0,縱坐標 0;⑤坐標原點:橫坐標 0,縱坐標 0。(填“>”、“<”或“=”)

8、點p(a,b)到_軸的距離是 |b| ,到y(tǒng)軸的距離是 |a| 。

9、對稱點的坐標特點①關(guān)于_軸對稱的兩個點,橫坐標 相等,縱坐標 互為相反數(shù);②關(guān)于y軸對稱的兩個點,縱坐標相等,橫坐標互為相反數(shù);③關(guān)于原點對稱的兩個點,橫坐標、縱坐標分別互為相反數(shù)。

10、點p(2,3) 到_軸的距離是 ; 到y(tǒng)軸的距離是 ; 點p(2,3) 關(guān)于_軸對稱的點坐標為( , );點p(2,3) 關(guān)于y軸對稱的點坐標為( , )。

11、如果兩個點的 橫坐標 相同,則過這兩點的直線與y軸平行、與_軸垂直 ;如果兩點的 縱坐標相同,則過這兩點的直線與_軸平行、與y軸垂直 。如果點p(2,3)、q(2,6),這兩點橫坐標相同,則pq∥y軸,pq⊥_軸;如果點p(-1,2)、q(4,2),這兩點縱坐標相同,則pq∥_軸,pq⊥y軸。

12、平行于_軸的直線上的點的縱坐標相同;平行于y軸的直線上的點的橫坐標相同;在一、三象限角平分線上的點的橫坐標與縱坐標相同;在二、四象限角平分線上的點的橫坐標與縱坐標互為相反數(shù)。如果點p(a,b) 在一、三象限角平分線上,則p點的橫坐標與縱坐標相同,即 a = b ;如果點p(a,b) 在二、四象限角平分線上,則p點的橫坐標與縱坐標互為相反數(shù),即 a = -b 。

13、表示一個點(或物體)的位置的方法:一是準確恰當?shù)亟⑵矫嬷苯亲鴺讼?二是正確寫出物體或某地所在的點的坐標。選擇的坐標原點不同,建立的平面直角坐標系也不同,得到的同一個點的坐標也不同。

14、圖形的平移可以轉(zhuǎn)化為點的平移。坐標平移規(guī)律:①左右平移時,橫坐標進行加減,縱坐標不變;②上下平移時,橫坐標不變,縱坐標進行加減;③坐標進行加減時,按“左減右加、上加下減”的規(guī)律進行。如將點p(2,3)向左平移2個單位后得到的點的坐標為( , );將點p(2,3)向右平移2個單位后得到的點的坐標為( , );將點p(2,3)向上平移2個單位后得到的點的坐標為( , );將點p(2,3)向下平移2個單位后得到的點的坐標為( , );將點p(2,3)先向左平移3個單位后再向上平移5個單位后得到的點的坐標為( , );將點p(2,3)先向左平移3個單位后再向下平移5個單位后得到的點的坐標為( , );將點p(2,3)先向右平移3個單位后再向上平移5個單位后得到的點的坐標為( , );將點p(2,3)先向右平移3個單位后再向下平移5個單位后得到的點的坐標為( , )。

第八章 二元一次方程組

一、知識網(wǎng)絡結(jié)構(gòu)

二、知識要點

1、含有未知數(shù)的等式叫方程,使方程左右兩邊的值相等的未知數(shù)的值叫方程的解。

2、方程含有兩個未知數(shù),并且含有未知數(shù)的項的次數(shù)都是1,這樣的方程叫二元一次方程,二元一次方程的一般形式為 ( 為常數(shù),并且 )。使二元一次方程的左右兩邊的值相等的未知數(shù)的值叫二元一次方程的解,一個二元一次方程一般有無數(shù)組解。

3、方程組含有兩個未知數(shù),并且含有未知數(shù)的項的次數(shù)都是1,這樣的方程組叫二元一次方程組。使二元一次方程組每個方程的左右兩邊的值相等的未知數(shù)的值叫二元一次方程組的解,一個二元一次方程組一般有一個解。

4、用代入法解二元一次方程組的一般步驟:觀察方程組中,是否有用含一個未知數(shù)的式子表示另一個未知數(shù),如果有,則將它直接代入另一個方程中;如果沒有,則將其中一個方程變形,用含一個未知數(shù)的式子表示另一個未知數(shù);再將表示出的未知數(shù)代入另一個方程中,從而消去一個未知數(shù),求出另一個未知數(shù)的值,將求得的未知數(shù)的值代入原方程組中的任何一個方程,求出另外一個未知數(shù)的值。

5、用加減法解二元一次方程組的一般步驟:(1)方程組的兩個方程中,如果同一個未知數(shù)的系數(shù)既不相等又不互為相反數(shù),就用適當?shù)臄?shù)去乘方程的兩邊,使同一個未知數(shù)的系數(shù)相等或互為相反數(shù);(2)把兩個方程的兩邊分別相加或相減,消去一個未知數(shù);(3)解這個一元一次方程,求出一個未知數(shù)的值;(4)將求出的未知數(shù)的值代入原方程組中的任何一個方程,求出另外一個未知數(shù)的值,從而得到原方程組的解。

6、解三元一次方程組的一般步驟:①觀察方程組中未知數(shù)的系數(shù)特點,確定先消去哪個未知數(shù);②利用代入法或加減法,把方程組中的一個方程,與另外兩個方程分別組成兩組,消去同一個未知數(shù),得到一個關(guān)于另外兩個未知數(shù)的二元一次方程組;③解這個二元一次方程組,求得兩個未知數(shù)的值;④將這兩個未知數(shù)的值代入原方程組中較簡單的一個方程中,求出第三個未知數(shù)的值,從而得到原三元一次方程組的解。

第九章 不等式與不等式組

一、知識網(wǎng)絡結(jié)構(gòu)

二、知識要點

1、用不等號表示不等關(guān)系的式子叫不等式,不等號主要包括: > 、 < 、 ≥ 、 ≤ 、 ≠ 。

2、在含有未知數(shù)的不等式中,使不等式成立的未知數(shù)的值叫不等式的解,一個含有未知數(shù)的不等式的所有的解組成的集合,叫這個不等式的解集。不等式的解集可以在數(shù)軸上表示出來。求不等式的解集的過程叫解不等式。含有一個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1,這樣的不等式叫一元一次不等式。

3、不等式的性質(zhì):

①性質(zhì)1:不等式的兩邊同時加上(或減去)同一個數(shù)(或式子),不等號的方向 不變 。

用字母表示為: 如果 ,那么 ; 如果 ,那么 ;

如果 ,那么 ; 如果 ,那么 。

②性質(zhì)2:不等式的兩邊同時乘以(或除以)同一個 正數(shù) ,不等號的方向 不變 。

用字母表示為: 如果 ,那么 (或 );如果 ,那么 (或 );

如果 ,那么 (或 );如果 ,那么 (或 );

③性質(zhì)3:不等式的兩邊同時乘以(或除以)同一個 負數(shù) ,不等號的方向 改變 。

用字母表示為: 如果 ,那么 (或 );如果 ,那么 (或 );

如果 ,那么 (或 );如果 ,那么 (或 );

4、解一元一次不等式的一般步驟:①去分母;②去括號;③移項;④合并同類項; ⑤系數(shù)化為1 。這與解一元一次方程類似,在解時要根據(jù)一元一次不等式的具體情況靈活選擇步驟。

5、不等式組中含有一個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1,這樣的不等式組叫一元一次不等式組。使不等式組中的每個不等式都成立的未知數(shù)的值叫不等式組的解,一個不等式組的所有的解組成的集合,叫這個不等式組的解集解(簡稱不等式組的解)。不等式組的解集可以在數(shù)軸上表示出來。求不等式組的解集的過程叫解不等式組。

6、解一元一次不等式組的一般步驟:①求出這個不等式組中各個不等式的解集;②利用數(shù)軸求出這些不等式的解集的公共部分,得到這個不等式組的解集。如果這些不等式的解集的沒有公共部分,則這個不等式組無解 ( 此時也稱這個不等式組的解集為空集 )。

7、求出各個不等式的解集后,確定不等式組的解的口訣:大大取大,小小取小,大小小大取中間,大大小小無處找。

第十章 數(shù)據(jù)的收集、整理與描述

知識要點

1、對數(shù)據(jù)進行處理的一般過程:收集數(shù)據(jù)、整理數(shù)據(jù)、描述數(shù)據(jù)、分析得出結(jié)論。

2、數(shù)據(jù)收集過程中,調(diào)查的方法通常有兩種:全面調(diào)查和抽樣調(diào)查。

3、除了文字敘述、列表、劃記法外,還可以用條形圖、折線圖、扇形圖、直方圖來描述數(shù)據(jù)。

4、抽樣調(diào)查簡稱抽查,它只抽取一部分對象進行調(diào)查,根據(jù)調(diào)查數(shù)據(jù)推斷全體對象的情況。要考察的全體對象叫總體,組成總體的每一個考察對象叫個體,被抽取的那部分個體組成總體的一個樣本,樣本中個體的數(shù)目叫這個樣本的容量 。

5、畫頻數(shù)直方圖的步驟:①計算數(shù)差(值與最小值的差);②確定組距和組數(shù);③列頻數(shù)分布表;④畫頻數(shù)直方圖 。

七年級下冊數(shù)學總結(jié)(優(yōu)選4篇)

七年級下冊數(shù)學整式的運算知識點總結(jié)一、整式單項式和多項式統(tǒng)稱整式。a)由數(shù)與字母的積組成的代數(shù)式叫做單項式。單獨一個數(shù)或字母也是單項式。b)單項式的系數(shù)是這個單項式…
推薦度:
點擊下載文檔文檔為doc格式

相關(guān)七年級下冊數(shù)學信息

  • 七年級下冊數(shù)學總結(jié)(優(yōu)選4篇)
  • 七年級下冊數(shù)學總結(jié)(優(yōu)選4篇)73人關(guān)注

    七年級下冊數(shù)學整式的運算知識點總結(jié)一、整式單項式和多項式統(tǒng)稱整式。a)由數(shù)與字母的積組成的代數(shù)式叫做單項式。單獨一個數(shù)或字母也是單項式。b)單項式的系數(shù)是 ...[更多]

相關(guān)專題

教學工作總結(jié)熱門信息