歡迎光臨管理范文網(wǎng)
當前位置:工作總結 > 總結大全 > 總結范文

橢圓總結(三篇)

發(fā)布時間:2023-05-17 17:03:07 查看人數(shù):33

橢圓總結

【第1篇 數(shù)學《橢圓的簡單幾何性質(zhì)》知識點總結

數(shù)學《橢圓的簡單幾何性質(zhì)》知識點總結

橢圓的簡單幾何性質(zhì)中的考查點:

(一)、對性質(zhì)的考查:

1、范圍:要注意方程與函數(shù)的區(qū)別與聯(lián)系;與橢圓有關的求最值是變量的取值范圍;作橢圓的草圖。

2、對稱性:橢圓的中心及其對稱性;判斷曲線關于_軸、軸及原點對稱的依據(jù);如果曲線具有關于_軸、軸及原點對稱中的任意兩種,那么它也具有另一種對稱性;注意橢圓不因坐標軸改變的固有性質(zhì)。

3、頂點:橢圓的頂點坐標;一般二次曲線的頂點即是曲線與對稱軸的交點;橢圓中a、b、c的幾何意義(橢圓的特征三角形及離心率的三角函數(shù)表示)。

4、離心率:離心率的定義;橢圓離心率的取值范圍:(0,1);橢圓的離心率的變化對橢圓的影響:當e趨向于1時:c趨向于a,此時,橢圓越扁平;當e趨向于0時:c趨向于0,此時,橢圓越接近于圓;當且僅當a=b時,c=0,兩焦點重合,橢圓變成圓。

(二)、課本例題的變形考查:

1、近日點、遠日點的'概念:橢圓上任意一點p(_,)到橢圓一焦點距離的最大值:a+c與最小值:a-c及取最值時點p的坐標;

2、橢圓的第二定義及其應用;橢圓的準線方程及兩準線間的距離、焦準距:焦半徑公式。

3、已知橢圓內(nèi)一點m,在橢圓上求一點p,使點p到點m與到橢圓準線的距離的和最小的求法。

4、橢圓的參數(shù)方程及橢圓的離心角:橢圓的參數(shù)方程的簡單應用:

5、直線與橢圓的位置關系,直線與橢圓相交時的弦長及弦中點問題。

【第2篇 橢圓方程式知識點總結

橢圓方程式知識點總結

橢圓方程式知識點總結 1. 橢圓方程的第一定義:

⑴①橢圓的標準方程:

i. 中心在原點,焦點在_軸上:. ii. 中心在原點,焦點在軸上:.

②一般方程:.③橢圓的.標準參數(shù)方程:的參數(shù)方程為(一象限應是屬于).

⑵①頂點:或.②軸:對稱軸:_軸,軸;長軸長,短軸長.③焦點:或.④焦距:.⑤準線:或.⑥離心率:.⑦焦點半徑:

i. 設為橢圓上的一點,為左、右焦點,則

由橢圓方程的第二定義可以推出.

ii.設為橢圓上的一點,為上、下焦點,則

由橢圓方程的第二定義可以推出.

由橢圓第二定義可知:歸結起來為左加右減.

注意:橢圓參數(shù)方程的推導:得方程的軌跡為橢圓.

⑧通徑:垂直于_軸且過焦點的弦叫做通經(jīng).坐標:和

⑶共離心率的橢圓系的方程:橢圓的離心率是,方程是大于0的參數(shù),的離心率也是 我們稱此方程為共離心率的橢圓系方程.

⑸若p是橢圓:上的點.為焦點,若,則的面積為(用余弦定理與可得). 若是雙曲線,則面積為.

【第3篇 數(shù)學橢圓知識點歸納總結

數(shù)學橢圓知識點歸納總結

知識要點:平面內(nèi)與兩定點f1、f2的距離的和等于常數(shù)2a(2a>;|f1f2|)的動點p的軌跡叫做橢圓。

橢圓的第一定義

即:│pf1│+│pf2│=2a

其中兩定點f1、f2叫做橢圓的焦點,兩焦點的距離│f1f2│=2c<2a叫做橢圓的焦距。

長軸長| a1a2 |=2a; 短軸長 | b1b2 |=2b。

橢圓的第二定義

平面內(nèi)到定點f的距離與到定直線的距離之比為常數(shù)e(即橢圓的離心率,e=c/a)的點的集合(定點f不在定直線上,該常數(shù)為小于1的正數(shù)) 其中定點f為橢圓的焦點,定直線稱為橢圓的準線(該定直線的方程是_=±a^2/c[焦點在_軸上];或者y=±a^2/c[焦點在y軸上])。

橢圓的其他定義

根據(jù)橢圓的一條重要性質(zhì),也就是橢圓上的點與橢圓短軸兩端點連線的斜率之積是定值 定值為e^2-1 可以得出:平面內(nèi)與兩定點的連線的斜率之積是常數(shù)k的動點的軌跡是橢圓,此時k應滿足一定的條件,也就是排除斜率不存在的情況,還有k應滿足<0且不等于-1。

簡單幾何性質(zhì)

1、范圍

2、對稱性:關于_軸對稱,y軸對稱,關于原點中心對稱。

3、頂點:(當中心為原點時)(a,0)(-a,0)(0,b)(0,-b)

4、離心率:e=c/a

5、離心率范圍 0

6、離心率越大橢圓就越扁,越小則越接近于圓

知識要領總結:根據(jù)橢圓的一條重要性質(zhì),也就是橢圓上的點與橢圓短軸兩端點連線的斜率之積是定值。

初中數(shù)學知識點總結:平面直角坐標系

下面是對平面直角坐標系的內(nèi)容學習,希望同學們很好的掌握下面的內(nèi)容。

平面直角坐標系

平面直角坐標系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。

水平的數(shù)軸稱為_軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。

平面直角坐標系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合

三個規(guī)定:

①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向

②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。

③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

相信上面對平面直角坐標系知識的講解學習,同學們已經(jīng)能很好的掌握了吧,希望同學們都能考試成功。

初中數(shù)學知識點:平面直角坐標系的構成

對于平面直角坐標系的構成內(nèi)容,下面我們一起來學習哦。

平面直角坐標系的構成

在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的.正方向。水平的數(shù)軸叫做_軸或橫軸,鉛直的數(shù)軸叫做y軸或縱軸,_軸或y軸統(tǒng)稱為坐標軸,它們的公共原點o稱為直角坐標系的原點。

通過上面對平面直角坐標系的構成知識的講解學習,希望同學們對上面的內(nèi)容都能很好的掌握,同學們認真學習吧。

初中數(shù)學知識點:點的坐標的性質(zhì)

下面是對數(shù)學中點的坐標的性質(zhì)知識學習,同學們認真看看哦。

點的坐標的性質(zhì)

建立了平面直角坐標系后,對于坐標系平面內(nèi)的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內(nèi)確定它所表示的一個點。

對于平面內(nèi)任意一點c,過點c分別向x軸、y軸作垂線,垂足在x軸、y軸上的對應點a,b分別叫做點c的橫坐標、縱坐標,有序?qū)崝?shù)對(a,b)叫做點c的坐標。

一個點在不同的象限或坐標軸上,點的坐標不一樣。

希望上面對點的坐標的性質(zhì)知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優(yōu)異成績的。

初中數(shù)學知識點:因式分解的一般步驟

關于數(shù)學中因式分解的一般步驟內(nèi)容學習,我們做下面的知識講解。

因式分解的一般步驟

如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,

通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結果,必須是幾個整式的積的形式。

相信上面對因式分解的一般步驟知識的內(nèi)容講解學習,同學們已經(jīng)能很好的掌握了吧,希望同學們會考出好成績。

初中數(shù)學知識點:因式分解

下面是對數(shù)學中因式分解內(nèi)容的知識講解,希望同學們認真學習。

因式分解

因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。

因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④

因式分解與整式乘法的關系:m(a+b+c)

公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。

公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。

提取公因式步驟:

①確定公因式。②確定商式③公因式與商式寫成積的形式。

分解因式注意;

①不準丟字母

②不準丟常數(shù)項注意查項數(shù)

③雙重括號化成單括號

④結果按數(shù)單字母單項式多項式順序排列

⑤相同因式寫成冪的形式

⑥首項負號放括號外

⑦括號內(nèi)同類項合并。

橢圓總結(三篇)

數(shù)學《橢圓的簡單幾何性質(zhì)》知識點總結橢圓的簡單幾何性質(zhì)中的考查點:(一)、對性質(zhì)的考查:1、范圍:要注意方程與函數(shù)的區(qū)別與聯(lián)系;與橢圓有關的求最值是變量的取值范圍;作橢圓的草…
推薦度:
點擊下載文檔文檔為doc格式

相關橢圓信息

  • 橢圓總結(三篇)
  • 橢圓總結(三篇)33人關注

    數(shù)學《橢圓的簡單幾何性質(zhì)》知識點總結橢圓的簡單幾何性質(zhì)中的考查點:(一)、對性質(zhì)的考查:1、范圍:要注意方程與函數(shù)的區(qū)別與聯(lián)系;與橢圓有關的求最值是變量的取值范圍 ...[更多]

總結范文熱門信息