- 目錄
【第1篇 初中數(shù)學(xué)平行四邊形知識(shí)點(diǎn)總結(jié)
初中數(shù)學(xué)平行四邊形知識(shí)點(diǎn)總結(jié)
初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)之平行四邊形的性質(zhì)
下面是對(duì)平行四邊形的性質(zhì)做的知識(shí)點(diǎn)的總結(jié)學(xué)習(xí)。
平行四邊形的性質(zhì):
① 兩組對(duì)邊分別平行的四邊形叫做平行四邊形。
② 平行四邊形不相鄰的兩個(gè)頂點(diǎn)連成的線段叫他的對(duì)角線。
③ 平行四邊形的對(duì)邊/對(duì)角相等。
④平行四邊形的對(duì)角線互相平分。
上面對(duì)平行四邊形的性質(zhì)知識(shí)點(diǎn)同學(xué)們已經(jīng)很好的學(xué)習(xí)了,希望上面的知識(shí)同學(xué)們能很好的掌握,并能很好的幫助同學(xué)們學(xué)習(xí)。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):平面直角坐標(biāo)系
下面是對(duì)平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。
平面直角坐標(biāo)系
平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的數(shù)軸稱為_軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合
三個(gè)規(guī)定:
①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向
②單位長(zhǎng)度的規(guī)定;一般情況,橫軸、縱軸單位長(zhǎng)度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。
③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
初中數(shù)學(xué)知識(shí)點(diǎn):平面直角坐標(biāo)系的構(gòu)成
對(duì)于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。
平面直角坐標(biāo)系的構(gòu)成
在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡(jiǎn)稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做_軸或橫軸,鉛直的數(shù)軸叫做y軸或縱軸,_軸或y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)o稱為直角坐標(biāo)系的原點(diǎn)。
通過上面對(duì)平面直角坐標(biāo)系的構(gòu)成知識(shí)的講解學(xué)習(xí),希望同學(xué)們對(duì)上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。
初中數(shù)學(xué)知識(shí)點(diǎn):點(diǎn)的坐標(biāo)的性質(zhì)
下面是對(duì)數(shù)學(xué)中點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)學(xué)習(xí),同學(xué)們認(rèn)真看看哦。
點(diǎn)的坐標(biāo)的性質(zhì)
建立了平面直角坐標(biāo)系后,對(duì)于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過來,對(duì)于任何一個(gè)坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個(gè)點(diǎn)。
對(duì)于平面內(nèi)任意一點(diǎn)c,過點(diǎn)c分別向x軸、y軸作垂線,垂足在x軸、y軸上的對(duì)應(yīng)點(diǎn)a,b分別叫做點(diǎn)c的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(duì)(a,b)叫做點(diǎn)c的坐標(biāo)。
一個(gè)點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。
希望上面對(duì)點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會(huì)在考試中取得優(yōu)異成績(jī)的。
初中數(shù)學(xué)知識(shí)點(diǎn):因式分解的一般步驟
關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識(shí)講解。
因式分解的一般步驟
如果多項(xiàng)式有公因式就先提公因式,沒有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,
通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個(gè)整式的積的形式。
相信上面對(duì)因式分解的一般步驟知識(shí)的.內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會(huì)考出好成績(jī)。
初中數(shù)學(xué)知識(shí)點(diǎn):因式分解
下面是對(duì)數(shù)學(xué)中因式分解內(nèi)容的知識(shí)講解,希望同學(xué)們認(rèn)真學(xué)習(xí)。
因式分解
因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。
因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④
因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。
公因式確定方法:①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。
提取公因式步驟:
①確定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
①不準(zhǔn)丟字母
②不準(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)
③雙重括號(hào)化成單括號(hào)
④結(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列
⑤相同因式寫成冪的形式
⑥首項(xiàng)負(fù)號(hào)放括號(hào)外
⑦括號(hào)內(nèi)同類項(xiàng)合并。
通過上面對(duì)因式分解內(nèi)容知識(shí)的講解學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學(xué)們的學(xué)習(xí)很好的幫助。
【第2篇 八年級(jí)奧數(shù)平行四邊形知識(shí)點(diǎn)總結(jié)2023
性質(zhì):
(1)如果一個(gè)四邊形是平行四邊形,那么這個(gè)四邊形的兩組對(duì)邊分別相等。
(簡(jiǎn)述為“平行四邊形的兩組對(duì)邊分別相等”)
(2)如果一個(gè)四邊形是平行四邊形,那么這個(gè)四邊形的兩組對(duì)角分別相等。
(簡(jiǎn)述為“平行四邊形的兩組對(duì)角分別相等”)
( 3)如果一個(gè)四邊形是平行四邊形,那么這個(gè)四邊形的鄰角互補(bǔ)
(簡(jiǎn)述為“平行四邊形的鄰角互補(bǔ)”)
(4)夾在兩條平行線間的平行的高相等。(平行線間的高距離處處相等)
(5)如果一個(gè)四邊形是平行四邊形,那么這個(gè)四邊形的兩條對(duì)角線互相平分。
(簡(jiǎn)述為“平行四邊形的對(duì)角線互相平分”)
(6)連接任意四邊形各邊的中點(diǎn)所得圖形是平行四邊形。(推論)
(7)平行四邊形的面積等于底和高的積。(可視為矩形).
(8)過平行四邊形對(duì)角線交點(diǎn)的直線,將平行四邊形分成全等的兩部分圖形。
(9)平行四邊形是中心對(duì)稱圖形,對(duì)稱中心是兩對(duì)角線的交點(diǎn).
(10)平行四邊形不是軸對(duì)稱圖形,但平行四邊形是中心對(duì)稱圖形。矩形和菱形是軸對(duì)稱圖形。注:正方形,矩形以及菱形也是一種特殊的平行四邊形,三者具有平行四邊形的性質(zhì)。
(11)平行四邊形abcd中(如圖)e為ab的中點(diǎn),則ac和de互相三等分,一般地,若e為ab上靠近a的n等分點(diǎn),則ac和de互相(n+1)等分。
(12)平行四邊形abcd中,ac、bd是平行四邊形abcd的對(duì)角線,則各四邊的平方和等于對(duì)角線的平方和。
(13)平行四邊形對(duì)角線把平行四邊形面積分成四等份。
(14)平行四邊形中,兩條在不同對(duì)邊上的高所組成的夾角,較小的角等于平行四邊形中較小的角,較大的角等于平行四邊形中較大的角。
(15)平行四邊形中,一個(gè)角的頂點(diǎn)向他對(duì)角的兩邊所做的高,與這個(gè)角的兩邊組成的夾角相等。
平行四邊形的對(duì)邊平行且相等平行四邊形的對(duì)角相等,鄰角互補(bǔ)平行四邊形的對(duì)角線互相平分平行四邊形的對(duì)角線的平方和等于四邊的平方和平行四邊形是中心對(duì)稱圖形,對(duì)稱中心是兩條對(duì)角線的交點(diǎn)平行四邊形的內(nèi)角和是外角和的四分之一 。
概念:
同一平面內(nèi),兩組對(duì)邊分別平行的四邊形稱為平行四邊形。
判定
1、兩組對(duì)邊分別平行的四邊形是平行四邊形(定義判定法);
2、一組對(duì)邊平行且相等的四邊形是平行四邊形;
3、兩組對(duì)邊分別相等的四邊形是平行四邊形;
4、對(duì)角線互相平分的四邊形是平行四邊形;
5、兩組對(duì)角分別相等的四邊形是平行四邊形;(不可以直接用)
6、每一組鄰角都互補(bǔ)的四邊形是平行四邊形。(同上)
【第3篇 2023初三年級(jí)奧數(shù)特殊平行四邊形知識(shí)點(diǎn)總結(jié)
1.1菱形的性質(zhì)與判定
菱形的定義:一組鄰邊相等的平行四邊形叫做菱形。
※菱形的性質(zhì):具有平行四邊形的性質(zhì),且四條邊都相等,兩條對(duì)角線互相垂直平分,每一條對(duì)角線平分一組對(duì)角。
菱形是軸對(duì)稱圖形,每條對(duì)角線所在的直線都是對(duì)稱軸。
※菱形的判別方法:一組鄰邊相等的平行四邊形是菱形。
對(duì)角線互相垂直的平行四邊形是菱形。
四條邊都相等的四邊形是菱形。
1.2 矩形的性質(zhì)與判定
※矩形的定義:有一個(gè)角是直角的平行四邊形叫矩形。矩形是特殊的平行四邊形。
※矩形的性質(zhì):具有平行四邊形的性質(zhì),且對(duì)角線相等,四個(gè)角都是直角。(矩形是軸對(duì)稱圖形,有兩條對(duì)稱軸)
※矩形的判定:有一個(gè)內(nèi)角是直角的平行四邊形叫矩形(根據(jù)定義)。
對(duì)角線相等的平行四邊形是矩形。
四個(gè)角都相等的四邊形是矩形。
※推論:直角三角形斜邊上的中線等于斜邊的一半。
1.3 正方形的性質(zhì)與判定
正方形的定義:一組鄰邊相等的矩形叫做正方形。
※正方形的性質(zhì):正方形具有平行四邊形、矩形、菱形的一切性質(zhì)。(正方形是軸對(duì)稱圖形,有兩條對(duì)稱軸)
※正方形常用的判定:有一個(gè)內(nèi)角是直角的菱形是正方形;
鄰邊相等的矩形是正方形;
對(duì)角線相等的菱形是正方形;
對(duì)角線互相垂直的矩形是正方形。
正方形、矩形、菱形和平行邊形四者之間的關(guān)系(如圖3所示):
※梯形定義:一組對(duì)邊平行且另一組對(duì)邊不平行的四邊形叫做梯形。
※兩條腰相等的梯形叫做等腰梯形。
※一條腰和底垂直的梯形叫做直角梯形。