- 目錄
-
第1篇一次函數(shù)初中數(shù)學(xué)知識點總結(jié) 第2篇八年級數(shù)學(xué)一次函數(shù)知識點小總結(jié) 第3篇初中數(shù)學(xué)一次函數(shù)知識點總結(jié) 第4篇一次函數(shù)的知識點總結(jié) 第5篇初中數(shù)學(xué)一次函數(shù)知識點歸納的總結(jié) 第6篇初中數(shù)學(xué)一次函數(shù)和方程知識點的總結(jié) 第7篇高一數(shù)學(xué)一次函數(shù)必修一知識點總結(jié) 第8篇一次函數(shù)知識點總結(jié) 第9篇初中數(shù)學(xué)一次函數(shù)基礎(chǔ)知識點總結(jié) 第10篇高中一次函數(shù)知識點總結(jié) 第11篇高一數(shù)學(xué)一次函數(shù)的知識點總結(jié) 第12篇八年級數(shù)學(xué)《一次函數(shù)》知識點總結(jié) 第13篇人教版數(shù)學(xué)七年級一次函數(shù)知識點總結(jié) 第14篇初二上冊數(shù)學(xué)一次函數(shù)知識點總結(jié) 第15篇八年級數(shù)學(xué)一次函數(shù)知識總結(jié) 第16篇2023高考數(shù)學(xué)知識點總結(jié):一次函數(shù)
【第1篇 一次函數(shù)初中數(shù)學(xué)知識點總結(jié)
一次函數(shù)初中數(shù)學(xué)知識點總結(jié)
一、定義與定義式:
自變量_和因變量y有如下關(guān)系:
y=k_+b
則此時稱y是_的一次函數(shù)。
特別地,當(dāng)b=0時,y是_的正比例函數(shù)。即:y=k_(k為常數(shù),k≠0)
二、一次函數(shù)的性質(zhì):
1.y的變化值與對應(yīng)的_的變化值成正比例,比值為k即:y=k_+b(k為任意不為零的實數(shù)b取任何實數(shù))
2.當(dāng)_=0時,b為函數(shù)在y軸上的截距。
三、一次函數(shù)的.圖像及性質(zhì):
1.作法與圖形:通過如下3個步驟
(1)列表;
(2)描點;
(3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點,并連成直線即可。(通常找函數(shù)圖像與_軸和y軸的交點)
2.性質(zhì):(1)在一次函數(shù)上的任意一點p(_,y),都滿足等式:y=k_+b。(2)一次函數(shù)與y軸交點的坐標(biāo)總是(0,b),與_軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點。
3.k,b與函數(shù)圖像所在象限:
當(dāng)k>0時,直線必通過一、三象限,y隨_的增大而增大;
當(dāng)k<0時,直線必通過二、四象限,y隨_的增大而減小。
當(dāng)b>0時,直線必通過一、二象限;
當(dāng)b=0時,直線通過原點
當(dāng)b<0時,直線必通過三、四象限。
特別地,當(dāng)b=o時,直線通過原點o(0,0)表示的是正比例函數(shù)的圖像。這時,當(dāng)k>0時,直線只通過一、三象限;當(dāng)k<0時,直線只通過二、四象限。
四、確定一次函數(shù)的表達式:
已知點a(_1,y1);b(_2,y2),請確定過點a、b的一次函數(shù)的表達式。
(1)設(shè)一次函數(shù)的表達式(也叫解析式)為y=k_+b。
(2)因為在一次函數(shù)上的任意一點p(_,y),都滿足等式y(tǒng)=k_+b。所以可以列出2個方程:y1=k_1+b……①和y2=k_2+b……②
(3)解這個二元一次方程,得到k,b的值。
(4)最后得到一次函數(shù)的表達式。
五、一次函數(shù)在生活中的應(yīng)用:
1.當(dāng)時間t一定,距離s是速度v的一次函數(shù)。s=vt。
2.當(dāng)水池抽水速度f一定,水池中水量g是抽水時間t的一次函數(shù)。設(shè)水池中原有水量s。g=s-ft。
六、常用公式:
1.求函數(shù)圖像的k值:(y1-y2)/(_1-_2)
2.求與_軸平行線段的中點:|_1-_2|/2
3.求與y軸平行線段的中點:|y1-y2|/2
4.求任意線段的長:√(_1-_2)^2+(y1-y2)^2(注:根號下(_1-_2)與(y1-y2)的平方和)
【第2篇 八年級數(shù)學(xué)一次函數(shù)知識點小總結(jié)
八年級數(shù)學(xué)一次函數(shù)知識點小總結(jié)
一.常量、變量:在一個變化過程中,數(shù)值發(fā)生變化的量叫做變量;數(shù)值始終不變的量叫做常量。
二、函數(shù)的概念:
函數(shù)的定義:一般的,在一個變化過程中,如果有兩個變量_與y,并且對于_的每一個確定的值,y都有唯一確定的值與其對應(yīng),那么我們就說_是自變量,y是_的函數(shù).
三、函數(shù)中自變量取值范圍的求法:
(1)用整式表示的函數(shù),自變量的取值范圍是全體實數(shù)。
(2)用分式表示的函數(shù),自變量的取值范圍是使分母不為0的一切實數(shù)。
(3)用寄次根式表示的函數(shù),自變量的取值范圍是全體實數(shù)。
用偶次根式表示的函數(shù),自變量的取值范圍是使被開方數(shù)為非負數(shù)的一切實數(shù)。
(4)若解析式由上述幾種形式綜合而成,須先求出各部分的取值范圍,然后再求其公共范圍,即為自變量的取值范圍。
(5)對于與實際問題有關(guān)系的,自變量的取值范圍應(yīng)使實際問題有意義。
四、函數(shù)圖象的定義:一般的,對于一個函數(shù),如果把自變量與函數(shù)的每對對應(yīng)值分別作為點的橫、縱坐標(biāo),那么在坐標(biāo)平面內(nèi)由這些點組成的圖形,就是這個函數(shù)的圖象.
五、用描點法畫函數(shù)的圖象的一般步驟
1、列表(表中給出一些自變量的值及其對應(yīng)的函數(shù)值。)
注意:列表時自變量由小到大,相差一樣,有時需對稱。
2、描點:(在直角坐標(biāo)系中,以自變量的值為橫坐標(biāo),相應(yīng)的函數(shù)值為縱坐標(biāo),描出表格中數(shù)值對應(yīng)的各點。
3、連線:(按照橫坐標(biāo)由小到大的順序把所描的各點用平滑的曲線連接起來)。
六、函數(shù)有三種表示形式:
(1)列表法(2)圖像法(3)解析式法
七、正比例函數(shù)與一次函數(shù)的概念:
一般地,形如y=k_(k為常數(shù),且k≠0)的函數(shù)叫做正比例函數(shù).其中k叫做比例系數(shù)。
一般地,形如y=k_+b(k,b為常數(shù),且k≠0)的函數(shù)叫做一次函數(shù).
當(dāng)b=0時,y=k_+b即為y=k_,所以正比例函數(shù),是一次函數(shù)的特例.
八、正比例函數(shù)的圖象與性質(zhì):
(1)圖象:正比例函數(shù)y=k_(k是常數(shù),k≠0))的圖象是經(jīng)過原點的一條直線,我們稱它為直線y=k_。
(2)性質(zhì):當(dāng)k>;0時,直線y=k_經(jīng)過第三,一象限,從左向右上升,即隨著_的增大y也增大;當(dāng)k<0時,直線y=k_經(jīng)過二,四象限,從左向右下降,即隨著_的增大y反而減小。
九、求函數(shù)解析式的方法:
待定系數(shù)法:先設(shè)出函數(shù)解析式,再根據(jù)條件確定解析式中未知的'系數(shù),從而具體寫出這個式子的方法。
1.一次函數(shù)與一元一次方程:從“數(shù)”的角度看_為何值時函數(shù)y=a_+b的值為0.
2.求a_+b=0(a,b是常數(shù),a≠0)的解,從“形”的角度看,求直線y=a_+b與_軸交點的橫坐標(biāo)
3.一次函數(shù)與一元一次不等式:
解不等式a_+b>;0(a,b是常數(shù),a≠0).從“數(shù)”的角度看,_為何值時函數(shù)y=a_+b的值大于0.
4.解不等式a_+b>;0(a,b是常數(shù),a≠0).從“形”的角度看,求直線y=a_+b在_軸上方的部分(射線)所對應(yīng)的的橫坐標(biāo)的取值范圍.
【第3篇 初中數(shù)學(xué)一次函數(shù)知識點總結(jié)
一、定義與定義式:
自變量_和因變量y有如下關(guān)系:
y=k_+b
則此時稱y是_的一次函數(shù)。
特別地,當(dāng)b=0時,y是_的正比例函數(shù)。即:y=k_ (k為常數(shù),k≠0)
二、一次函數(shù)的性質(zhì):
1.y的變化值與對應(yīng)的_的變化值成正比例,比值為k 即:y=k_+b (k為任意不為零的實數(shù) b取任何實數(shù))
2.當(dāng)_=0時,b為函數(shù)在y軸上的截距。
三、一次函數(shù)的圖像及性質(zhì):
1.作法與圖形:通過如下3個步驟
(1)列表;
(2)描點;
(3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點,并連成直線即可。(通常找函數(shù)圖像與_軸和y軸的交點)
2.性質(zhì):(1)在一次函數(shù)上的任意一點p(_,y),都滿足等式:y=k_+b。(2)一次函數(shù)與y軸交點的坐標(biāo)總是(0,b),與_軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點。
3.k,b與函數(shù)圖像所在象限:
當(dāng)k>0時,直線必通過一、三象限,y隨_的增大而增大;
當(dāng)k<0時,直線必通過二、四象限,y隨_的增大而減小。
當(dāng)b>0時,直線必通過一、二象限;
當(dāng)b=0時,直線通過原點
當(dāng)b<0時,直線必通過三、四象限。
特別地,當(dāng)b=o時,直線通過原點o(0,0)表示的是正比例函數(shù)的圖像。這時,當(dāng)k>0時,直線只通過一、三象限;當(dāng)k<0時,直線只通過二、四象限。
【第4篇 一次函數(shù)的知識點總結(jié)
關(guān)于一次函數(shù)的知識點總結(jié)
一.常量、變量:在一個變化過程中,數(shù)值發(fā)生變化的量叫做 變量 ;數(shù)值始終不變的量叫做 常量 。
二、函數(shù)的概念:
函數(shù)的定義:一般的,在一個變化過程中,如果有兩個變量_與y,并且對于_的每一個確定的值,y都有唯一確定的值與其對應(yīng),那么我們就說_是自變量,y是_的函數(shù).
三、函數(shù)中自變量取值范圍的求法:
(1)用整式表示的函數(shù),自變量的取值范圍是全體實數(shù)。
(2)用分式表示的函數(shù),自變量的取值范圍是使分母不為0的一切實數(shù)。
(3)用寄次根式表示的函數(shù),自變量的取值范圍是全體實數(shù)。
用偶次根式表示的函數(shù),自變量的取值范圍是使被開方數(shù)為非負數(shù)的一 切實數(shù)。
(4)若解析式由上述幾種形式綜合而成,須先求出各部分的取值范圍,然后再求其公共范圍,即為自變量的取值范圍。
(5)對于與實際問題有關(guān)系的,自變量的.取值范圍應(yīng)使實際問題有意義。
四、 函數(shù)圖象的定義:一般的,對于一個函數(shù),如果把自變量與函數(shù)的每對對應(yīng)值分別作為點的橫、縱坐標(biāo),那么在坐標(biāo)平面內(nèi)由這些點組成的圖形,就是這個函數(shù)的圖象.
五、用描點法畫函數(shù)的圖象的一般步驟
1、列表(表中給出一些自變量的值及其對應(yīng)的函數(shù)值。)
注意:列表時自變量由小到大,相差一樣,有時需對稱。
2、描點:(在直角坐標(biāo)系中,以自變量的值為橫坐標(biāo),相應(yīng)的函數(shù)值為縱坐標(biāo),描出表格中數(shù)值對應(yīng)的各點。
3、連線:(按照橫坐標(biāo)由小到大的順序把所描的各點用平滑的曲線連接起來)。
六、函數(shù)有三種表示形式:
(1)列表法 (2)圖像法 (3)解析式法
七、正比例函數(shù)與一次函數(shù)的概念:
一般地,形如y=k_(k為常數(shù),且k0)的函數(shù)叫做正比例函數(shù).其中k叫做比例系數(shù)。
一般地,形如y=k_+b (k,b為常數(shù),且k0)的函數(shù)叫做一次函數(shù).
當(dāng)b =0 時,y=k_+b 即為 y=k_,所以正比例函數(shù),是一次函數(shù)的特例.
八、正比例函數(shù)的圖象與性質(zhì):
(1)圖象:正比例函數(shù)y= k_ (k 是常數(shù),k0)) 的圖象是經(jīng)過原點的一條直線,我們稱它為直線y= k_ 。
(2)性質(zhì):當(dāng)k0時,直線y= k_經(jīng)過第三,一象限,從左向右上升,即隨著_的增大y也增大;當(dāng)k0時,直線y= k_經(jīng)過二,四象限,從左向右下降,即隨著 _的增大y反而減小。
九、求函數(shù)解析式的方法:
待定系數(shù)法:先設(shè)出函數(shù)解析式,再根據(jù)條件確定解析式中未知的系數(shù),從而具體寫出這個式子的方法。
1.一次函數(shù)與一元一次方程:從數(shù)的角度看_為何值時函數(shù)y= a_+b的值為0.
2.求a_+b=0(a, b是常數(shù),a0)的解,從形的角度看,求直線y= a_+b與 _ 軸交點的橫坐標(biāo)
3.一次函數(shù)與一元一次不等式:
解不等式a_+b0(a,b是常數(shù),a0) .從數(shù)的角度看,_為何值時函數(shù)y= a_+b的值大于0.
4. 解不等式a_+b0(a,b是常數(shù),a0) . 從形的角度看,求直線y= a_+b在 _ 軸上方的部分(射線)所對應(yīng)的的橫坐標(biāo)的取值范圍.
八年級數(shù)學(xué)一次函數(shù)知識點總結(jié)就為大家介紹到這里了,希望大家都能養(yǎng)成善于總結(jié)的好習(xí)慣。
【第5篇 初中數(shù)學(xué)一次函數(shù)知識點歸納的總結(jié)
關(guān)于初中數(shù)學(xué)一次函數(shù)知識點歸納的總結(jié)
知識要點:一次函數(shù),也作線性函數(shù),在_,y坐標(biāo)軸中可以用一條直線表示,當(dāng)一次函數(shù)中的一個變量的值確定時,可以用一元一次方程確定另一個變量的值。
一次函數(shù)
表達式為y=k_+b(k≠0,k、b均為常數(shù))的函數(shù),叫做y是_的一次函數(shù)。當(dāng)b=0時稱y為_的正比例函數(shù),正比例函數(shù)是一次函數(shù)中的特殊情況。當(dāng)常數(shù)項為零時的一次函數(shù),可表示為y=k_(k≠0),這時的常數(shù)k也叫比例系數(shù)。
y關(guān)于自變量_的一次函數(shù)有如下關(guān)系:
1.y=k_+b (k為任意不為0的常數(shù),b為任意實數(shù))
當(dāng)_取一個值時,y有且只有一個值與_對應(yīng)。如果有2個及以上個值與_對應(yīng)時,就不是一次函數(shù)。
_為自變量,y為因變量,k為常數(shù),y是_的一次函數(shù)。
特別的,當(dāng)b=0時,y是_的正比例函數(shù)。即:y=k_ (k為常量,但k≠0)正比例函數(shù)圖像經(jīng)過原點。
定義域:自變量_的取值范圍。自變量的取值一要使函數(shù)有意義;二要與實際相符合。
函數(shù)性質(zhì)
1.在正比例函數(shù)時,_與y的商一定。在反比例函數(shù)時,_與y的積一定。
在y=k_+b(k,b為常數(shù),k≠0)中,當(dāng)_增大m倍時,函數(shù)值y則增大 m倍,反之,當(dāng)_減少m倍時,函數(shù)值y則減少 m倍。
2.當(dāng)_=0時,b為一次函數(shù)圖像與y軸交點的縱坐標(biāo),該點的坐標(biāo)為(0,b)。
3.當(dāng)b=0時,一次函數(shù)變?yōu)檎壤瘮?shù)。當(dāng)然正比例函數(shù)為特殊的一次函數(shù)。
4.在兩個一次函數(shù)表達式中:
當(dāng)兩個一次函數(shù)表達式中的k相同,b也相同時,則這兩個一次函數(shù)的圖像重合;
當(dāng)兩個一次函數(shù)表達式中的k相同,b不相同時,則這兩個一次函數(shù)的圖像平行;
當(dāng)兩個一次函數(shù)表達式中的k不相同,b不相同時,則這兩個一次函數(shù)的圖像相交;
當(dāng)兩個一次函數(shù)表達式中的k不相同,b相同時,則這兩個一次函數(shù)圖像交于y軸上的同一點(0,b);
當(dāng)兩個一次函數(shù)表達式中的k互為負倒數(shù)是,則這兩個一次函數(shù)圖像互相垂直。
5.兩個一次函數(shù)(y1=k1_+b1,y2=k2_+b2)相乘時(k≠0),得到的的新函數(shù)為二次函數(shù),
該函數(shù)的對稱軸為-(k2b1+k1b2)/(2k1k2);
當(dāng)k1,k2正負相同時,二次函數(shù)開口向上;
當(dāng)k1,k2正負相反時,二次函數(shù)開口向下。
二次函數(shù)與y軸交點為(0,b2b1)。
6.兩個一次函數(shù)(y1=a_+b,y2=c_+d)之比,得到的新函數(shù)y3=(a_+b)/(c_+d)為反比性函數(shù),漸近線為_=-b/a,y=c/a。
知識要領(lǐng)總結(jié):常用的表示方法:解析法、圖像法、列表法。
初中數(shù)學(xué)知識點總結(jié):平面直角坐標(biāo)系
下面是對平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。
平面直角坐標(biāo)系
平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的數(shù)軸稱為_軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點為平面直角坐標(biāo)系的原點。
平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合
三個規(guī)定:
①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向
②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。
③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標(biāo)系知識的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
初中數(shù)學(xué)知識點:平面直角坐標(biāo)系的構(gòu)成
對于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。
平面直角坐標(biāo)系的構(gòu)成
在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做_軸或橫軸,鉛直的數(shù)軸叫做y軸或縱軸,_軸或y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點o稱為直角坐標(biāo)系的原點。
通過上面對平面直角坐標(biāo)系的構(gòu)成知識的講解學(xué)習(xí),希望同學(xué)們對上面的內(nèi)容都能很好的掌握,同學(xué)們認真學(xué)習(xí)吧。
初中數(shù)學(xué)知識點:點的坐標(biāo)的性質(zhì)
下面是對數(shù)學(xué)中點的坐標(biāo)的性質(zhì)知識學(xué)習(xí),同學(xué)們認真看看哦。
點的坐標(biāo)的性質(zhì)
建立了平面直角坐標(biāo)系后,對于坐標(biāo)系平面內(nèi)的任何一點,我們可以確定它的坐標(biāo)。反過來,對于任何一個坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個點。
對于平面內(nèi)任意一點c,過點c分別向x軸、y軸作垂線,垂足在x軸、y軸上的對應(yīng)點a,b分別叫做點c的`橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(a,b)叫做點c的坐標(biāo)。
一個點在不同的象限或坐標(biāo)軸上,點的坐標(biāo)不一樣。
希望上面對點的坐標(biāo)的性質(zhì)知識講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會在考試中取得優(yōu)異成績的。
初中數(shù)學(xué)知識點:因式分解的一般步驟
關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識講解。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會考出好成績。
初中數(shù)學(xué)知識點:因式分解
下面是對數(shù)學(xué)中因式分解內(nèi)容的知識講解,希望同學(xué)們認真學(xué)習(xí)。
因式分解
因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④
因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
①確定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
①不準(zhǔn)丟字母
②不準(zhǔn)丟常數(shù)項注意查項數(shù)
③雙重括號化成單括號
④結(jié)果按數(shù)單字母單項式多項式順序排列
⑤相同因式寫成冪的形式
⑥首項負號放括號外
⑦括號內(nèi)同類項合并。
通過上面對因式分解內(nèi)容知識的講解學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學(xué)們的學(xué)習(xí)很好的幫助。
【第6篇 初中數(shù)學(xué)一次函數(shù)和方程知識點的總結(jié)
關(guān)于初中數(shù)學(xué)一次函數(shù)和方程知識點的總結(jié)
一次函數(shù)和方程
1、從形式上看:一次函數(shù)y=k_+b, 一元一次方程a_+b=0 。
2、從內(nèi)容上看:一次函數(shù)表示的是一對(_,y)之間的關(guān)系,它有無數(shù)對解;一元一次方程表示的是未知數(shù)_
的值,最多只有1個值 。
3、相互關(guān)系:一次函數(shù)與_軸交點的橫坐標(biāo)就是相應(yīng)的一元一次方程的根。 例如:y=4_+8與_軸的交點是
(-2,0)、則一元一次方程4_+8=0的根是_=-2。
平面直角坐標(biāo)系
平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的數(shù)軸稱為_軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點為平面直角坐標(biāo)系的原點。
平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合
三個規(guī)定:
①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向
②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。
③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
平面直角坐標(biāo)系的構(gòu)成
在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做_軸或橫軸,鉛直的數(shù)軸叫做y軸或縱軸,_軸或y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點o稱為直角坐標(biāo)系的原點。
點的.坐標(biāo)的性質(zhì)
建立了平面直角坐標(biāo)系后,對于坐標(biāo)系平面內(nèi)的任何一點,我們可以確定它的坐標(biāo)。反過來,對于任何一個坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個點。
對于平面內(nèi)任意一點c,過點c分別向x軸、y軸作垂線,垂足在x軸、y軸上的對應(yīng)點a,b分別叫做點c的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(a,b)叫做點c的坐標(biāo)。
一個點在不同的象限或坐標(biāo)軸上,點的坐標(biāo)不一樣。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。
因式分解
因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④
因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
①確定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
①不準(zhǔn)丟字母
②不準(zhǔn)丟常數(shù)項注意查項數(shù)
③雙重括號化成單括號
④結(jié)果按數(shù)單字母單項式多項式順序排列
⑤相同因式寫成冪的形式
⑥首項負號放括號外
⑦括號內(nèi)同類項合并。
【第7篇 高一數(shù)學(xué)一次函數(shù)必修一知識點總結(jié)
1.拋物線是軸對稱圖形。對稱軸為直線
_=-b/2a。
對稱軸與拋物線的交點為拋物線的頂點p。
特別地,當(dāng)b=0時,拋物線的對稱軸是y軸(即直線_=0)
2.拋物線有一個頂點p,坐標(biāo)為
p(-b/2a,(4ac-b’2)/4a)
當(dāng)-b/2a=0時,p在y軸上;當(dāng)δ=b’2-4ac=0時,p在_軸上。
3.二次項系數(shù)a決定拋物線的開口方向和大小。
當(dāng)a>;0時,拋物線向上開口;當(dāng)a<0時,拋物線向下開口。
|a|越大,則拋物線的開口越小。
4.一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。
當(dāng)a與b同號時(即ab>;0),對稱軸在y軸左;
當(dāng)a與b異號時(即ab<0),對稱軸在y軸右。
5.常數(shù)項c決定拋物線與y軸交點。
拋物線與y軸交于(0,c)
6.拋物線與_軸交點個數(shù)
δ=b’2-4ac>;0時,拋物線與_軸有2個交點。
δ=b’2-4ac=0時,拋物線與_軸有1個交點。
δ=b’2-4ac<0時,拋物線與_軸沒有交點。_的取值是虛數(shù)(_=-b±√b’2-4ac的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)
高一數(shù)學(xué)學(xué)習(xí)方法
1.學(xué)習(xí)的心態(tài)。
多數(shù)中等生的數(shù)學(xué)成績是很有希望提升。一方面是目前具備了一定基礎(chǔ),加上努力認真,這種學(xué)生態(tài)度沒有問題,只是缺少方向和適合的方法而已。另一方面,備考時間還算充足,還有時間進行調(diào)整和優(yōu)化。所以平日里多給自己一些積極的心里暗示,堅持不斷地實踐合適自己的學(xué)習(xí)方法。
2.備考的方向。
什么是備考方向?所謂備考方向就是考試方向。在平時做題的時候,要弄明白,你面前的題是哪個知識框架下,那種類型的題型,做這樣類型的題有什么樣的方法,這一類的題型有哪些?等等。
題型和知識點都是有限的,只要我們根據(jù)??嫉念}型,尋找解題思路并合理的訓(xùn)練,那么很容易提升自己的數(shù)學(xué)成績。
3.訓(xùn)練的方式。
每個人實際的情況不一樣,訓(xùn)練的方式也不不同,考試中取得的好成績都是考前合理訓(xùn)練的結(jié)果。很多學(xué)生抱怨時間不足,每天做完作業(yè)以后,身心疲憊。面對一堆題目,特別是數(shù)學(xué)題,可以注重以下幾個角度:
(1)弄清楚自己的需要。例如拿到老師布置的作業(yè),無論是試卷還是課本習(xí)題,如果帶著情緒做,那么效果肯定不好。首先要弄清自己的需要,比如這些題目中哪些題目質(zhì)量好?哪些是你還沒有弄懂的?哪些是以前常出現(xiàn)的?哪些是你肯定會做的等等,你最想解決哪題?
(2)制定目標(biāo)。如果應(yīng)付老師來做題無疑導(dǎo)致做題質(zhì)量不高,那么在做題之前應(yīng)該制定一定目標(biāo),如上面說的那樣,你通過哪些題目來訓(xùn)練正確率?通過哪些題目來練習(xí)速度?通過哪些題目來完善步驟等等。有了目標(biāo),更好的實現(xiàn)目標(biāo),在這個過程中,你肯定有很多收獲。
【第8篇 一次函數(shù)知識點總結(jié)
關(guān)于一次函數(shù)知識點總結(jié)
知識點1一次函數(shù)和正比例函數(shù)的概念
若兩個變量_,y間的關(guān)系式可以表示成y=k_+b(k,b為常數(shù),k≠0)的形式,則稱y是_的一次函數(shù)(_為自變量),特別地,當(dāng)b=0時,稱y是_的正比例函數(shù).
知識點2函數(shù)的圖象
由于兩點確定一條直線,一般選取兩個特殊點:直線與y軸的交點,直線與_軸的交點。.不必一定選取這兩個特殊點.
畫正比例函數(shù)y=k_的圖象時,只要描出點(0,0),(1,k)即可.
知識點3一次函數(shù)y=k_+b(k,b為常數(shù),k≠0)的性質(zhì)
(1)k的正負決定直線的傾斜方向;
①k>;0時,y的值隨_值的增大而增大;
②k﹤o時,y的值隨_值的增大而減小.
(2)|k|大小決定直線的傾斜程度,即|k|越大
①當(dāng)b>;0時,直線與y軸交于正半軸上;
②當(dāng)b<0時,直線與y軸交于負半軸上;
③當(dāng)b=0時,直線經(jīng)過原點,是正比例函數(shù).
(4)由于k,b的符號不同,直線所經(jīng)過的象限也不同;
①如圖所示,當(dāng)k>;0,b>;0時,直線經(jīng)過第一、二、三象限(直線不經(jīng)過第四象限);
②如圖所示,當(dāng)k>;0,b
③如圖所示,當(dāng)k﹤o,b>;0時,直線經(jīng)過第一、二、四象限(直線不經(jīng)過第三象限);
④如圖所示,當(dāng)k﹤o,b﹤o時,直線經(jīng)過第二、三、四象限(直線不經(jīng)過第一象限).
(5)由于|k|決定直線與_軸相交的銳角的大小,k相同,說明這兩個銳角的大小相等,且它們是同位角,因此,它們是平行的.另外,從平移的'角度也可以分析,例如:直線y=_+1可以看作是正比例函數(shù)y=_向上平移一個單位得到的.
知識點4正比例函數(shù)y=k_(k≠0)的性質(zhì)
(1)正比例函數(shù)y=k_的圖象必經(jīng)過原點;
(2)當(dāng)k>;0時,圖象經(jīng)過第一、三象限,y隨_的增大而增大;
(3)當(dāng)k<0時,圖象經(jīng)過第二、四象限,y隨_的增大而減小.
知識點5點p(_0,y0)與直線y=k_+b的圖象的關(guān)系
(1)如果點p(_0,y0)在直線y=k_+b的圖象上,那么_0,y0的值必滿足解析式y(tǒng)=k_+b;
(2)如果_0,y0是滿足函數(shù)解析式的一對對應(yīng)值,那么以_0,y0為坐標(biāo)的點p(1,2)必在函數(shù)的圖象上.
例如:點p(1,2)滿足直線y=_+1,即_=1時,y=2,則點p(1,2)在直線y=_+l的圖象上;點p′(2,1)不滿足解析式y(tǒng)=_+1,因為當(dāng)_=2時,y=3,所以點p′(2,1)不在直線y=_+l的圖象上.
知識點6確定正比例函數(shù)及一次函數(shù)表達式的條件
(1)由于正比例函數(shù)y=k_(k≠0)中只有一個待定系數(shù)k,故只需一個條件(如一對_,y的值或一個點)就可求得k的值.
(2)由于一次函數(shù)y=k_+b(k≠0)中有兩個待定系數(shù)k,b,需要兩個獨立的條件確定兩個關(guān)于k,b的方程,求得k,b的值,這兩個條件通常是兩個點或兩對_,y的值.
知識點7待定系數(shù)法
先設(shè)待求函數(shù)關(guān)系式(其中含有未知常數(shù)系數(shù)),再根據(jù)條件列出方程(或方程組),求出未知系數(shù),從而得到所求結(jié)果的方法,叫做待定系數(shù)法.其中未知系數(shù)也叫待定系數(shù).例如:函數(shù)y=k_+b中,k,b就是待定系數(shù).
知識點8用待定系數(shù)法確定一次函數(shù)表達式一般步驟
(1)設(shè)函數(shù)表達式為y=k_+b;
(2)將已知點的坐標(biāo)代入函數(shù)表達式,解方程(組);
(3)求出k與b的值,得到函數(shù)表達式.
思想方法小結(jié)(1)函數(shù)方法.(2)數(shù)形結(jié)合法.
知識規(guī)律小結(jié)(1)常數(shù)k,b對直線y=k_+b(k≠0)位置的影響.
①當(dāng)b>;0時,直線與y軸的正半軸相交;
當(dāng)b=0時,直線經(jīng)過原點;
當(dāng)b﹤0時,直線與y軸的負半軸相交.
②當(dāng)k,b異號時,直線與_軸正半軸相交;
當(dāng)b=0時,直線經(jīng)過原點;
當(dāng)k,b同號時,直線與_軸負半軸相交.
③當(dāng)k>;o,b>;o時,圖象經(jīng)過第一、二、三象限;
當(dāng)k>;0,b=0時,圖象經(jīng)過第一、三象限;
【第9篇 初中數(shù)學(xué)一次函數(shù)基礎(chǔ)知識點總結(jié)
初中數(shù)學(xué)一次函數(shù)基礎(chǔ)知識點總結(jié)
知識要領(lǐng):當(dāng)一次函數(shù)中的一個變量的值確定時,可以用一元一次方程確定另一個變量的值。
一次函數(shù)基礎(chǔ)知識
表達式為y=k_+b(k≠0,k、b均為常數(shù))的函數(shù),叫做y是_的一次函數(shù)。當(dāng)b=0時稱y為_的正比例函數(shù),正比例函數(shù)是一次函數(shù)中的特殊情況。當(dāng)常數(shù)項為零時的一次函數(shù),可表示為y=k_(k≠0),這時的常數(shù)k也叫比例系數(shù)。
y關(guān)于自變量_的一次函數(shù)有如下關(guān)系:
1.y=k_+b (k為任意不為0的常數(shù),b為任意實數(shù))
當(dāng)_取一個值時,y有且只有一個值與_對應(yīng)。如果有2個及以上個值與_對應(yīng)時,就不是一次函數(shù)。
_為自變量,y為因變量,k為常數(shù),y是_的一次函數(shù)。
特別的',當(dāng)b=0時,y是_的正比例函數(shù)。即:y=k_ (k為常量,但k≠0)正比例函數(shù)圖像經(jīng)過原點。
定義域:自變量_的取值范圍。自變量的取值一要使函數(shù)有意義;二要與實際相符合。
常用的表示方法:解析法、圖像法、列表法。
函數(shù)性質(zhì) 1.在正比例函數(shù)時,_與y的商一定。在反比例函數(shù)時,_與y的積一定。
在y=k_+b(k,b為常數(shù),k≠0)中,當(dāng)_增大m倍時,函數(shù)值y則增大 m倍,反之,當(dāng)_減少m倍時,函數(shù)值y則減少 m倍。
2.當(dāng)_=0時,b為一次函數(shù)圖像與y軸交點的縱坐標(biāo),該點的坐標(biāo)為(0,b)。
3.當(dāng)b=0時,一次函數(shù)變?yōu)檎壤瘮?shù)。當(dāng)然正比例函數(shù)為特殊的一次函數(shù)。
4.在兩個一次函數(shù)表達式中:
當(dāng)兩個一次函數(shù)表達式中的k相同,b也相同時,則這兩個一次函數(shù)的圖像重合;
當(dāng)兩個一次函數(shù)表達式中的k相同,b不相同時,則這兩個一次函數(shù)的圖像平行;
當(dāng)兩個一次函數(shù)表達式中的k不相同,b不相同時,則這兩個一次函數(shù)的圖像相交;
當(dāng)兩個一次函數(shù)表達式中的k不相同,b相同時,則這兩個一次函數(shù)圖像交于y軸上的同一點(0,b);
當(dāng)兩個一次函數(shù)表達式中的k互為負倒數(shù)時,則這兩個一次函數(shù)圖像互相垂直。
5.兩個一次函數(shù)(y1=k1_+b1,y2=k2_+b2)相乘時(k≠0),得到的的新函數(shù)為二次函數(shù),
該函數(shù)的對稱軸為-(k2b1+k1b2)/(2k1k2);
當(dāng)k1,k2正負相同時,二次函數(shù)開口向上;
當(dāng)k1,k2正負相反時,二次函數(shù)開口向下。
二次函數(shù)與y軸交點為(0,b2b1)。
6.兩個一次函數(shù)(y1=a_+b,y2=c_+d)之比,得到的新函數(shù)y3=(a_+b)/(c_+d)為反比性函數(shù),漸近線為_=-b/a,y=c/a。
知識歸納:在一個變化過程中,數(shù)值發(fā)生變化的量叫做 變量 ;數(shù)值始終不變的量叫做常量 。
【第10篇 高中一次函數(shù)知識點總結(jié)
高中一次函數(shù)知識點總結(jié)
一般地,形如y=k_+b(k≠0,k,b是常數(shù)),那么y叫做_的一次函數(shù)。數(shù)學(xué)網(wǎng)整理了高考數(shù)學(xué)一輪復(fù)習(xí)知識點總結(jié),請考生參考。
一、定義與定義式:
自變量_和因變量y有如下關(guān)系:
y=k_+b
則此時稱y是_的一次函數(shù)。
特別地,當(dāng)b=0時,y是_的正比例函數(shù)。
即:y=k_(k為常數(shù),k≠0)
二、一次函數(shù)的性質(zhì):
1.y的變化值與對應(yīng)的._的變化值成正比例,比值為k
即:y=k_+b(k為任意不為零的實數(shù)b取任何實數(shù))
2.當(dāng)_=0時,b為函數(shù)在y軸上的截距。
三、一次函數(shù)的圖像及性質(zhì):
1.作法與圖形:通過如下3個步驟
(1)列表;
(2)描點;
(3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點,并連成直線即可。(通常找函數(shù)圖像與_軸和y軸的交點)
2.性質(zhì):(1)在一次函數(shù)上的任意一點p(_,y),都滿足等式:y=k_+b。(2)一次函數(shù)與y軸交點的坐標(biāo)總是(0,b),與_軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點。
3.k,b與函數(shù)圖像所在象限:
當(dāng)k>;0時,直線必通過一、三象限,y隨_的增大而增大;
當(dāng)k<0時,直線必通過二、四象限,y隨_的增大而減小。
當(dāng)b>;0時,直線必通過一、二象限;
當(dāng)b=0時,直線通過原點
當(dāng)b<0時,直線必通過三、四象限。
特別地,當(dāng)b=o時,直線通過原點o(0,0)表示的是正比例函數(shù)的圖像。
這時,當(dāng)k>;0時,直線只通過一、三象限;當(dāng)k<0時,直線只通過二、四象限。
高考數(shù)學(xué)一輪復(fù)習(xí)知識點總結(jié):一次函數(shù)定義與性質(zhì)的全部內(nèi)容就是這些,數(shù)學(xué)網(wǎng)希望考生可以考上理想的大學(xué)。
【第11篇 高一數(shù)學(xué)一次函數(shù)的知識點總結(jié)
高一數(shù)學(xué)一次函數(shù)的知識點總結(jié)
一、定義與定義式:
自變量_和因變量有如下關(guān)系:
=_+b
則此時稱是_的一次函數(shù)。
特別地,當(dāng)b=0時,是_的正比例函數(shù)。
即:=_ (為常數(shù),≠0)
二、一次函數(shù)的性質(zhì):
1.的變化值與對應(yīng)的_的變化值成正比例,比值為
即:=_+b (為任意不為零的實數(shù) b取任何實數(shù))
2.當(dāng)_=0時,b為函數(shù)在軸上的截距。
三、一次函數(shù)的圖像及性質(zhì):
1.作法與圖形:通過如下3個步驟
(1)列表;
(2)描點;
(3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點,并連成直線即可。(通常找函數(shù)圖像與_軸和軸的交點)
2.性質(zhì):(1)在一次函數(shù)上的任意一點p(_,),都滿足等式:=_+b。(2)一次函數(shù)與軸交點的`坐標(biāo)總是(0,b),與_軸總是交于(-b/,0)正比例函數(shù)的圖像總是過原點。
3.,b與函數(shù)圖像所在象限:
當(dāng)>;0時,直線必通過一、三象限,隨_的增大而增大;
當(dāng)<0時,直線必通過二、四象限,隨_的增大而減小。
當(dāng)b>;0時,直線必通過一、二象限;
當(dāng)b=0時,直線通過原點
當(dāng)b<0時,直線必通過三、四象限。
特別地,當(dāng)b=o時,直線通過原點o(0,0)表示的是正比例函數(shù)的圖像。
這時,當(dāng)>;0時,直線只通過一、三象限;當(dāng)<0時,直線只通過二、四象限。
四、確定一次函數(shù)的表達式:
已知點a(_1,1);b(_2,2),請確定過點a、b的一次函數(shù)的表達式。
(1)設(shè)一次函數(shù)的表達式(也叫解析式)為=_+b。
(2)因為在一次函數(shù)上的任意一點p(_,),都滿足等式=_+b。所以可以列出2個方程:1=_1+b …… ① 和 2=_2+b …… ②
(3)解這個二元一次方程,得到,b的值。
(4)最后得到一次函數(shù)的表達式。
五、一次函數(shù)在生活中的應(yīng)用:
1.當(dāng)時間t一定,距離s是速度v的一次函數(shù)。s=vt。
2.當(dāng)水池抽水速度f一定,水池中水量g是抽水時間t的一次函數(shù)。設(shè)水池中原有水量s。g=s-ft。
六、常用公式:(不全,希望有人補充)
1.求函數(shù)圖像的值:(1-2)/(_1-_2)
2.求與_軸平行線段的中點:|_1-_2|/2
3.求與軸平行線段的中點:|1-2|/2
4.求任意線段的長:√(_1-_2)^2+(1-2)^2 (注:根號下(_1-_2)與(1-2)的平方和)
【第12篇 八年級數(shù)學(xué)《一次函數(shù)》知識點總結(jié)
八年級數(shù)學(xué)《一次函數(shù)》知識點總結(jié)
八年級數(shù)學(xué)下冊《一次函數(shù)》知識點總結(jié)
一.常量、變量:
在一個變化過程中,數(shù)值發(fā)生變化的量叫做 變量 ;數(shù)值始終不變的量叫做 常量 。
二、函數(shù)的概念:
函數(shù)的定義:一般的,在一個變化過程中,如果有兩個變量_與,并且對于_的每一個確定的值,都有唯一確定的值與其對應(yīng),那么我們就說_是自變量,是_的函數(shù).
三、函數(shù)中自變量取值范圍的求法:
(1)用整式表示的函數(shù),自變量的取值范圍是全體實數(shù)。
(2)用分式表示的函數(shù),自變量的取值范圍是使分母不為0的一切實數(shù)。
(3)用寄次根式表示的函數(shù),自變量的取值范圍是全體實數(shù)。
用偶次根式表示的函數(shù),自變量的取值范圍是使被開方數(shù)為非負數(shù)的一 切實數(shù)。
(4)若解析式由上述幾種形式綜合而成,須先求出各部分的取值范圍,然后再求其公共范圍,即為自變量的取值范圍。
(5)對于與實際問題有關(guān)系的,自變量的取值范圍應(yīng)使實際問題有意義。
四、 函數(shù)圖象的定義:一般的,對于一個函數(shù),如果把自變量與函數(shù)的每對對應(yīng)值分別作為點的橫、縱坐標(biāo),那么在坐標(biāo)平面內(nèi)由這些點組成的圖形,就是這個函數(shù)的.圖象.
五、用描點法畫函數(shù)的圖象的一般步驟
1、列表(表中給出一些自變量的值及其對應(yīng)的函數(shù)值。)
注意:列表時自變量由小到大,相差一樣,有時需對稱。
2、描點:(在直角坐標(biāo)系中,以自變量的值為橫坐標(biāo),相應(yīng)的函數(shù)值為縱坐標(biāo),描出表格中數(shù)值對應(yīng)的各點。
3、連線:(按照橫坐標(biāo)由小到大的順序把所描的各點用平滑的曲線連接起來)。
六、函數(shù)有三種表示形式:
(1)列表法 (2)圖像法 (3)解析式法
七、正比例函數(shù)與一次函數(shù)的概念:
一般地,形如=_(為常數(shù),且≠0)的函數(shù)叫做正比例函數(shù).其中叫做比例系數(shù)。
一般地,形如=_+b (,b為常數(shù),且≠0)的函數(shù)叫做一次函數(shù).
當(dāng)b =0 時,=_+b 即為 =_,所以正比例函數(shù),是一次函數(shù)的特例.
八、正比例函數(shù)的圖象與性質(zhì):
(1)圖象:正比例函數(shù)= _ ( 是常數(shù),≠0)) 的圖象是經(jīng)過原點的一條直線,我們稱它為直線= _ 。
(2)性質(zhì):當(dāng)>;0時,直線= _經(jīng)過第三,一象限,從左向右上升,即隨著_的增大也增大;當(dāng)<0時,直線= _經(jīng)過二,四象限,從左向右下降,即隨著 _的增大反而減小。
九、求函數(shù)解析式的方法:
待定系數(shù)法:先設(shè)出函數(shù)解析式,再根據(jù)條件確定解析式中未知的系數(shù),從而具體寫出這個式子的方法。
1.一次函數(shù)與一元一次方程:從“數(shù)”的角度看_為何值時函數(shù)= a_+b的值為0.
2.求a_+b=0(a, b是常數(shù),a≠0)的解,從“形”的角度看,求直線= a_+b與 _ 軸交點的橫坐標(biāo)
3.一次函數(shù)與一元一次不等式:
解不等式a_+b>0(a,b是常數(shù),a≠0) .從“數(shù)”的角度看,_為何值時函數(shù)= a_+b的值大于0.
4. 解不等式a_+b>0(a,b是常數(shù),a≠0) . 從“形”的角度看,求直線= a_+b在 _ 軸上方的部分(射線)所對應(yīng)的的橫坐標(biāo)的取值范圍.
十、一次函數(shù)與正比例函數(shù)的圖象與性質(zhì)
一 次 函 數(shù)
概 念如果=_+b(、b是常數(shù),≠0),那么叫_的一次函數(shù).當(dāng)b=0時,一次函數(shù)=_(≠0)也叫正比例函數(shù).
圖 像一條直線
性 質(zhì)>0時,隨_的增大(或減小)而增大(或減小);
<0時,隨_的增大(或減小)而減小(或增大).
直線=_+b(≠0)的位置與、b符號之間的關(guān)系.(1)>;0,b>0圖像經(jīng)過一、二、三象限;
(2)>;0,b<0圖像經(jīng)過一、三、四象限;
(3)>;0,b=0 圖像經(jīng)過一、三象限;
(4)<0,b>0圖像經(jīng)過一、二、四象限;
(5)<0,b<0圖像經(jīng)過二、三、四象限;
(6)<0,b=0圖像經(jīng)過二、四象限。
一次函數(shù)表達式的確定求一次函數(shù)=_+b(、b是常數(shù),≠0)時,需要由兩個點來確定;求正比例函數(shù)=_(≠0)時,只需一個點即可.
5.一次函數(shù)與二元一次方程組:
解方程組
從“數(shù)”的角度看,自變量(_)為何值時兩個函數(shù)的值相等.并
求出這個函數(shù)值
解方程組
從“形”的角度看,確定兩直線交點的坐標(biāo).
【第13篇 人教版數(shù)學(xué)七年級一次函數(shù)知識點總結(jié)
1.若正比例函數(shù) ( ≠ )經(jīng)過點( , ),則該正比例函數(shù)的解析式為 ___________.
2.如圖,一次函數(shù) 的圖象經(jīng)過a、b兩點,則關(guān)于_的不等式 的解集是 __________ .
3. 一次函數(shù)的圖象經(jīng)過點(1,2),且y隨_的增大而減小,則這個函數(shù)的解析式可以是__________ .(任寫出一個符合題意即可)
4.一次函數(shù) 的圖象大致是( )
5.如果點m在直線 上,則m點的坐標(biāo)可以是( )
a.(-1,0) b.(0,1) c.(1,0) d.(1,-1)
考點歸納
1.正比例函數(shù)的一般形式是__________.一次函數(shù)的一般形式是__________________.
2. 一次函數(shù) 的圖象是經(jīng)過__________和__________兩點的__________ .
3. 求一次函數(shù)的解析式的方法是__________,其基本步驟是:⑴ __________;⑵ __________; ⑶ __________ ;⑷ __________ .
4.一次函數(shù) 的圖象與性質(zhì)
【第14篇 初二上冊數(shù)學(xué)一次函數(shù)知識點總結(jié)
一、函數(shù):
一般地,在某一變化過程中有兩個變量_與y,如果給定一個_值,相應(yīng)地就確定了一個y值,那么我們稱y是_的函數(shù),其中_是自變量,y是因變量。
二、自變量取值范圍
使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。一般從整式(取全體實數(shù)),分式(分母不為0)、二次根式(被開方數(shù)為非負數(shù))、實際意義幾方面考慮。
三、函數(shù)的三種表示法及其優(yōu)缺點
(1)關(guān)系式(解析)法
兩個變量間的函數(shù)關(guān)系,有時可以用一個含有這兩個變量及數(shù)字運算符號的等式表示,這種表示法叫做關(guān)系式(解析)法。
(2)列表法
把自變量_的一系列值和函數(shù)y的對應(yīng)值列成一個表來表示函數(shù)關(guān)系,這種表示法叫做列表法。
(3)圖象法
用圖象表示函數(shù)關(guān)系的方法叫做圖象法。
四、由函數(shù)關(guān)系式畫其圖像的一般步驟
(1)列表:列表給出自變量與函數(shù)的一些對應(yīng)值
(2)描點:以表中每對對應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點
(3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。
五、正比例函數(shù)和一次函數(shù)
1、正比例函數(shù)和一次函數(shù)的概念
一般地,若兩個變量_,y間的關(guān)系可以表示成(k,b為常數(shù),k0)的形式,則稱y是_的一次函數(shù)(_為自變量,y為因變量)。
特別地,當(dāng)一次函數(shù)中的b=0時(即)(k為常數(shù),k0),稱y是_的正比例函數(shù)。
2、一次函數(shù)的圖像:所有一次函數(shù)的圖像都是一條直線
3、一次函數(shù)、正比例函數(shù)圖像的主要特征:
一次函數(shù)的圖像是經(jīng)過點(0,b)的直線;正比例函數(shù)的圖像是經(jīng)過原點(0,0)的直線。
4、正比例函數(shù)的性質(zhì)
一般地,正比例函數(shù)有下列性質(zhì):
(1)當(dāng)k>0時,圖像經(jīng)過第一、三象限,y隨_的增大而增大;
(2)當(dāng)k<0時,圖像經(jīng)過第二、四象限,y隨_的增大而減小。
5、一次函數(shù)的性質(zhì)
一般地,一次函數(shù)有下列性質(zhì):
(1)當(dāng)k>0時,y隨_的增大而增大
(2)當(dāng)k<0時,y隨_的增大而減小
6、正比例函數(shù)和一次函數(shù)解析式的確定
確定一個正比例函數(shù),就是要確定正比例函數(shù)定義式(k0)中的常數(shù)k。確定一個一次函數(shù),需要確定一次函數(shù)定義式(k0)中的常數(shù)k和b。解這類問題的一般方法是待定系數(shù)法。
7、一次函數(shù)與一元一次方程的關(guān)系:
任何一個一元一次方程都可轉(zhuǎn)化為:k_+b=0(k、b為常數(shù),k≠0)的形式.而一次函數(shù)解析式形式正是y=k_+b(k、b為常數(shù),k≠0).當(dāng)函數(shù)值為0時,即k_+b=0就與一元一次方程完全相同.
結(jié)論:由于任何一元一次方程都可轉(zhuǎn)化為k_+b=0(k、b為常數(shù),k≠0)的形式.所以解一元一次方程可以轉(zhuǎn)化為:當(dāng)一次函數(shù)值為0時,求相應(yīng)的自變量的值.
從圖象上看,這相當(dāng)于已知直線y=k_+b確定它與_軸交點的橫坐標(biāo)值.
【第15篇 八年級數(shù)學(xué)一次函數(shù)知識總結(jié)
八年級數(shù)學(xué)一次函數(shù)知識總結(jié)
一次函數(shù)
我們稱數(shù)值變化的量為變量(variable)。
有些量的數(shù)值是始終不變的,我們稱它們?yōu)槌A?constant)。
在一個變化過程中,如果有兩個變量_與y,并且對于_的每一個確定的值,y都有唯一確定的值與其對應(yīng),那么我們說_是自變量(independent variable),y是_的函數(shù)(function)。
如果當(dāng)_=a時y=b,那么b叫做當(dāng)自變量的值為a時的函數(shù)值。
形如y=k_(k是常數(shù),k≠0)的函數(shù),叫做正比例函數(shù)(proportional function),其中k叫做比例系數(shù)。
形如y=k_+b(k,b是常數(shù),k≠0)的函數(shù),叫做一次函數(shù)(linear function)。正比例函數(shù)是一種特殊的一次函數(shù)。
當(dāng)k>0時,y隨_的增大而增大;當(dāng)k<0時,y隨_的增大而減小。
每個二元一次方程組都對應(yīng)兩個一次函數(shù),于是也對應(yīng)兩條直線。從“形”的角度看,解方程組相當(dāng)于確定兩條直線交點的坐標(biāo)。
同學(xué)們對上面一次函數(shù)知識點的總結(jié)內(nèi)容學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,加油吧。
初中數(shù)學(xué)知識點總結(jié):平面直角坐標(biāo)系
下面是對平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。
平面直角坐標(biāo)系
平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的數(shù)軸稱為_軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點為平面直角坐標(biāo)系的原點。
平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合
三個規(guī)定:
①正方向的.規(guī)定橫軸取向右為正方向,縱軸取向上為正方向
②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。
③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標(biāo)系知識的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
初中數(shù)學(xué)知識點:平面直角坐標(biāo)系的構(gòu)成
對于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。
平面直角坐標(biāo)系的構(gòu)成
在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做_軸或橫軸,鉛直的數(shù)軸叫做y軸或縱軸,_軸或y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點o稱為直角坐標(biāo)系的原點。
通過上面對平面直角坐標(biāo)系的構(gòu)成知識的講解學(xué)習(xí),希望同學(xué)們對上面的內(nèi)容都能很好的掌握,同學(xué)們認真學(xué)習(xí)吧。
初中數(shù)學(xué)知識點:點的坐標(biāo)的性質(zhì)
下面是對數(shù)學(xué)中點的坐標(biāo)的性質(zhì)知識學(xué)習(xí),同學(xué)們認真看看哦。
點的坐標(biāo)的性質(zhì)
建立了平面直角坐標(biāo)系后,對于坐標(biāo)系平面內(nèi)的任何一點,我們可以確定它的坐標(biāo)。反過來,對于任何一個坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個點。
對于平面內(nèi)任意一點c,過點c分別向x軸、y軸作垂線,垂足在x軸、y軸上的對應(yīng)點a,b分別叫做點c的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(a,b)叫做點c的坐標(biāo)。
一個點在不同的象限或坐標(biāo)軸上,點的坐標(biāo)不一樣。
希望上面對點的坐標(biāo)的性質(zhì)知識講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會在考試中取得優(yōu)異成績的。
初中數(shù)學(xué)知識點:因式分解的一般步驟
關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識講解。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會考出好成績。
初中數(shù)學(xué)知識點:因式分解
下面是對數(shù)學(xué)中因式分解內(nèi)容的知識講解,希望同學(xué)們認真學(xué)習(xí)。
因式分解
因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④
因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
①確定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
①不準(zhǔn)丟字母
②不準(zhǔn)丟常數(shù)項注意查項數(shù)
③雙重括號化成單括號
④結(jié)果按數(shù)單字母單項式多項式順序排列
⑤相同因式寫成冪的形式
⑥首項負號放括號外
⑦括號內(nèi)同類項合并。
通過上面對因式分解內(nèi)容知識的講解學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學(xué)們的學(xué)習(xí)很好的幫助。
【第16篇 2023高考數(shù)學(xué)知識點總結(jié):一次函數(shù)
一、定義與定義式:
自變量_和因變量y有如下關(guān)系:
y=k_+b
則此時稱y是_的一次函數(shù)。
特別地,當(dāng)b=0時,y是_的正比例函數(shù)。
即:y=k_(k為常數(shù),k≠0)
二、一次函數(shù)的性質(zhì):
1.y的變化值與對應(yīng)的_的變化值成正比例,比值為k
即:y=k_+b(k為任意不為零的實數(shù)b取任何實數(shù))
2.當(dāng)_=0時,b為函數(shù)在y軸上的截距。
三、一次函數(shù)的圖像及性質(zhì):
1.作法與圖形:通過如下3個步驟
(1)列表;
(2)描點;
(3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點,并連成直線即可。(通常找函數(shù)圖像與_軸和y軸的交點)
2.性質(zhì):(1)在一次函數(shù)上的任意一點p(_,y),都滿足等式:y=k_+b。(2)一次函數(shù)與y軸交點的坐標(biāo)總是(0,b),與_軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點。