- 目錄
【第1篇 數(shù)學(xué)輔導(dǎo):中考數(shù)學(xué)重點公式、定理、推論總結(jié)
1 過兩點有且只有一條直線
2 兩點之間線段最短
3 同角或等角的補角相等
4 同角或等角的余角相等
5 過一點有且只有一條直線和已知直線垂直
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7 平行公理:經(jīng)過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內(nèi)錯角相等,兩直線平行
11 同旁內(nèi)角互補,兩直線平行
12 兩直線平行,同位角相等
13 兩直線平行,內(nèi)錯角相等
14 兩直線平行,同旁內(nèi)角互補
15 定理:三角形兩邊的和大于第三邊
16 推論:三角形兩邊的差小于第三邊
17 三角形內(nèi)角和定理:三角形三個內(nèi)角的和等于180°
18 推論1:直角三角形的兩個銳角互余
19 推論2:三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和
20 推論3:三角形的一個外角大于任何一個和它不相鄰的內(nèi)角
21 全等三角形的對應(yīng)邊、對應(yīng)角相等
22 邊角邊公理:有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等
23 角邊角公理:有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等
24 推論:有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等
25 邊邊邊公理:有三邊對應(yīng)相等的兩個三角形全等
26 斜邊、直角邊公理有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等
27 定理1:在角的平分線上的點到這個角的兩邊的距離相等
28 定理2:到一個角的兩邊的距離相同的點,在這個角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點的集合
30 等腰三角形的性質(zhì)定理:等腰三角形的兩個底角相等
31 推論1:等腰三角形頂角的平分線平分底邊并且垂直于底邊
32 等腰三角形的頂角平分線、底邊上的中線和高互相重合
33 推論3:等邊三角形的各角都相等,并且每一個角都等于60°34等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
35 推論1:三個角都相等的三角形是等邊三角形
36 推論2:有一個角等于60°的等腰三角形是等邊三角形
37 在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半
38 直角三角形斜邊上的中線等于斜邊上的一半
39 定理:線段垂直平分線上的點和這條線段兩個端點的距離相等
40 逆定理:和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42 定理1:關(guān)于某條直線對稱的兩個圖形是全等形
43 定理2:如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線
44 定理3:兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上
45 逆定理:如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱
46 勾股定理:直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a+b=c
47 勾股定理的逆定理:如果三角形的三邊長a、b、c有關(guān)系a+b=c,那么這個三角形是直角三角形
48 定理四邊形的內(nèi)角和等于360°
49 四邊形的外角和等于360°
50 多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°
51 推論:任意多邊的外角和等于360°
52 平行四邊形性質(zhì)定理1:平行四邊形的對角相等
53 平行四邊形性質(zhì)定理2:平行四邊形的對邊相等
54 推論:夾在兩條平行線間的平行線段相等
55 平行四邊形性質(zhì)定理3:平行四邊形的對角線互相平分
56 平行四邊形判定定理1:兩組對角分別相等的四邊形是平行四邊形
57 平行四邊形判定定理2:兩組對邊分別相等的四邊形是平行四邊形
58 平行四邊形判定定理3:對角線互相平分的四邊形是平行四邊形
59 平行四邊形判定定理4:一組對邊平行相等的四邊形是平行四邊形
60 矩形性質(zhì)定理1:矩形的四個角都是直角
61 矩形性質(zhì)定理2:矩形的對角線相等
62 矩形判定定理1:有三個角是直角的四邊形是矩形
63 矩形判定定理2:對角線相等的平行四邊形是矩形
64 菱形性質(zhì)定理1:菱形的四條邊都相等
65 菱形性質(zhì)定理2:菱形的對角線互相垂直,并且每一條對角線平分一組對角
66 菱形面積=對角線乘積的一半,即s=(a×b)÷2
67 菱形判定定理1:四邊都相等的四邊形是菱形
68 菱形判定定理2:對角線互相垂直的平行四邊形是菱形
69 正方形性質(zhì)定理1:正方形的四個角都是直角,四條邊都相等
70 正方形性質(zhì)定理2:正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角
71 定理1:關(guān)于中心對稱的兩個圖形是全等的
72 定理2:關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分
73 逆定理:如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱
74 等腰梯形性質(zhì)定理:等腰梯形在同一底上的兩個角相等
75 等腰梯形的兩條對角線相等
101 圓是定點的距離等于定長的點的集合
102 圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合
103 圓的外部可以看作是圓心的距離大于半徑的點的集合
104 同圓或等圓的半徑相等
105 到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106 和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107 到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108 到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
109 定理:不在同一直線上的三個點確定一條直線
110 垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
111 推論1:①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
112 推論2:圓的兩條平行弦所夾的弧相等
113 圓是以圓心為對稱中心的中心對稱圖形
114 定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115 推論:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等
116 定理:一條弧所對的圓周角等于它所對的圓心角的一半
117 推論1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118 推論2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119 推論3:如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形
120 定理:圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角
121 ①直線l和⊙o相交d﹤r
②直線l和⊙o相切d=r
122 切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
123 切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點的半徑
124 推論1:經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點
125 推論2:經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心
【第2篇 2023中考數(shù)學(xué)重點公式、定理、推論總結(jié)
1 過兩點有且只有一條直線
2 兩點之間線段最短
3 同角或等角的補角相等
4 同角或等角的余角相等
5 過一點有且只有一條直線和已知直線垂直
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7 平行公理:經(jīng)過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內(nèi)錯角相等,兩直線平行
11 同旁內(nèi)角互補,兩直線平行
12 兩直線平行,同位角相等
13 兩直線平行,內(nèi)錯角相等
14 兩直線平行,同旁內(nèi)角互補
15 定理:三角形兩邊的和大于第三邊
16 推論:三角形兩邊的差小于第三邊
17 三角形內(nèi)角和定理:三角形三個內(nèi)角的和等于180°
18 推論1:直角三角形的兩個銳角互余
19 推論2:三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和
20 推論3:三角形的一個外角大于任何一個和它不相鄰的內(nèi)角
21 全等三角形的對應(yīng)邊、對應(yīng)角相等
22 邊角邊公理:有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等
23 角邊角公理:有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等
24 推論:有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等
25 邊邊邊公理:有三邊對應(yīng)相等的兩個三角形全等
26 斜邊、直角邊公理有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等
27 定理1:在角的平分線上的點到這個角的兩邊的距離相等
28 定理2:到一個角的兩邊的距離相同的點,在這個角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點的集合
30 等腰三角形的性質(zhì)定理:等腰三角形的兩個底角相等
31 推論1:等腰三角形頂角的平分線平分底邊并且垂直于底邊
32 等腰三角形的頂角平分線、底邊上的中線和高互相重合
33 推論3:等邊三角形的各角都相等,并且每一個角都等于60°34等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
35 推論1:三個角都相等的三角形是等邊三角形
36 推論2:有一個角等于60°的等腰三角形是等邊三角形
37 在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半
38 直角三角形斜邊上的中線等于斜邊上的一半
39 定理:線段垂直平分線上的點和這條線段兩個端點的距離相等
40 逆定理:和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42 定理1:關(guān)于某條直線對稱的兩個圖形是全等形
43 定理2:如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線
44 定理3:兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上
45 逆定理:如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱
46 勾股定理:直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a+b=c
47 勾股定理的逆定理:如果三角形的三邊長a、b、c有關(guān)系a+b=c,那么這個三角形是直角三角形
48 定理四邊形的內(nèi)角和等于360°
49 四邊形的外角和等于360°
50 多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°
51 推論:任意多邊的外角和等于360°
52 平行四邊形性質(zhì)定理1:平行四邊形的對角相等
53 平行四邊形性質(zhì)定理2:平行四邊形的對邊相等
54 推論:夾在兩條平行線間的平行線段相等
55 平行四邊形性質(zhì)定理3:平行四邊形的對角線互相平分
56 平行四邊形判定定理1:兩組對角分別相等的四邊形是平行四邊形
57 平行四邊形判定定理2:兩組對邊分別相等的四邊形是平行四邊形
58 平行四邊形判定定理3:對角線互相平分的四邊形是平行四邊形
59 平行四邊形判定定理4:一組對邊平行相等的四邊形是平行四邊形
60 矩形性質(zhì)定理1:矩形的四個角都是直角
61 矩形性質(zhì)定理2:矩形的對角線相等
62 矩形判定定理1:有三個角是直角的四邊形是矩形
63 矩形判定定理2:對角線相等的平行四邊形是矩形
64 菱形性質(zhì)定理1:菱形的四條邊都相等
65 菱形性質(zhì)定理2:菱形的對角線互相垂直,并且每一條對角線平分一組對角
66 菱形面積=對角線乘積的一半,即s=(a×b)÷2
67 菱形判定定理1:四邊都相等的四邊形是菱形
68 菱形判定定理2:對角線互相垂直的平行四邊形是菱形
69 正方形性質(zhì)定理1:正方形的四個角都是直角,四條邊都相等
70 正方形性質(zhì)定理2:正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角
71 定理1:關(guān)于中心對稱的兩個圖形是全等的
72 定理2:關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分
73 逆定理:如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱
74 等腰梯形性質(zhì)定理:等腰梯形在同一底上的兩個角相等
75 等腰梯形的兩條對角線相等
101 圓是定點的距離等于定長的點的集合
102 圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合
103 圓的外部可以看作是圓心的距離大于半徑的點的集合
104 同圓或等圓的半徑相等
105 到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106 和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107 到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108 到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
109 定理:不在同一直線上的三個點確定一條直線
110 垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
111 推論1:①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
112 推論2:圓的兩條平行弦所夾的弧相等
113 圓是以圓心為對稱中心的中心對稱圖形
114 定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115 推論:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等
116 定理:一條弧所對的圓周角等于它所對的圓心角的一半
117 推論1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118 推論2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119 推論3:如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形
120 定理:圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角
121 ①直線l和⊙o相交d﹤r
②直線l和⊙o相切d=r
122 切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
123 切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點的半徑
124 推論1:經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點
125 推論2:經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心
126 切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角
127 圓的外切四邊形的兩組對邊的和相等
128 弦切角定理:弦切角等于它所夾的弧對的圓周角
129 推論:如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等
130 相交弦定理:圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積相等
131 推論:如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項
132 切割線定理:從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項
133 推論:從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等
134 如果兩個圓相切,那么切點一定在連心線上
135 ①兩圓外離d﹥r+r②兩圓外切d=r+r
③兩圓相交r-r﹤d﹤r+r(r﹥r)
④兩圓內(nèi)切d=r-r(r﹥r)⑤兩圓內(nèi)含d﹤r-r(r﹥r)
136 定理:相交兩圓的連心線垂直平分兩圓的公共弦
137 定理:把圓分成n(n≥3):
⑴依次連結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形
⑵經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138 定理:任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓
139 正n邊形的每個內(nèi)角都等于(n-2)×180°/n
140 定理:正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141 正n邊形的面積sn=pnrn/2p表示正n邊形的周長
142 正三角形面積√3a/4a表示邊長
143 如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144 弧長計算公式:l=n∏r/180
145 扇形面積公式:s扇形=n∏r/360=lr/2
146 內(nèi)公切線長=d-(r-r)外公切線長=d-(r+r)
【第3篇 初中數(shù)學(xué)的推論總結(jié)
初中數(shù)學(xué)的推論總結(jié)
51推論任意多邊的外角和等于360°
52平行四邊形性質(zhì)定理1平行四邊形的對角相等
53平行四邊形性質(zhì)定理2平行四邊形的對邊相等
54推論夾在兩條平行線間的平行線段相等
55平行四邊形性質(zhì)定理3平行四邊形的對角線互相平分
56平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形
57平行四邊形判定定理2兩組對邊分別相等的`四邊形是平行四邊形
58平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形
59平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形
60矩形性質(zhì)定理1矩形的四個角都是直角
61矩形性質(zhì)定理2矩形的對角線相等
62矩形判定定理1有三個角是直角的四邊形是矩形
63矩形判定定理2對角線相等的平行四邊形是矩形
64菱形性質(zhì)定理1菱形的四條邊都相等
65菱形性質(zhì)定理2菱形的對角線互相垂直,并且每一條對角線平分一組對角
66菱形面積=對角線乘積的一半,即s=(a×b)÷2
67菱形判定定理1四邊都相等的四邊形是菱形
68菱形判定定理2對角線互相垂直的平行四邊形是菱形
69正方形性質(zhì)定理1正方形的四個角都是直角,四條邊都相等
70正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角
71定理1關(guān)于中心對稱的兩個圖形是全等的
72定理2關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分
73逆定理如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱
74等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個角相等
75等腰梯形的兩條對角線相等